PROYECTO: TECNOLOGÍA Y EDUCACIÓN A DISTANCIA
EN AMÉRICA LATINA Y EL CARIBE
Programa Interamericano de Capacitación de Maestros
Serie • Enseñanza de las matemáticas

MÓDULO 10

GEOMETRÍA
Áreas y Teorema de Pitágoras

Propuesta didáctica
Tenoch E. Cedillo Ávalos, UPN
Valentin Cruz Oliva, ILCE
Enrique Vega Ramírez, UPN
Rodrigo Cambray Núñez, UPN

Consultores externos
Alejandro Díaz Barriga Casales
Instituto de Matemáticas, UNAM
Carolyn Kieran
Universidad de Quebec en Montreal, Canadá
MÓDULO 10

GEOMETRÍA

Áreas y Teorema de Pitágoras

Propuesta didáctica
Tenoch E. Cedillo Ávalos, UPN
Valentín Cruz Oliva, ILCE
Enrique Vega Ramírez, UPN
Rodrigo Cambray Núñez, UPN

Consultores externos
Alejandro Díaz Barriga Casales
Instituto de Matemáticas, UNAM

Carolyn Kieran
Universidad de Quebec en Montreal, Canadá
Proyecto: Tecnología y Educación a Distancia en América Latina y el Caribe
Programa Interamericano de Capacitación de Maestros
Serie: Enseñanza de las matemáticas
Sección: Geometría

Módulo 10: Áreas y Teorema de Pitágoras

Diseño de colección y de portada: Margarita Morales y Mayela Crisóstomo
Formación: Miguel Ángel Silva Aceves
Corrección de estilo: Armando Ruiz Contreras

© Derechos reservados por el Banco Interamericano de Desarrollo.
© Derechos reservados por la Universidad Pedagógica Nacional.
Carretera al Ahusco núm. 24, col. Héroes de Padierna, c.p. 14200,
Tlalpan, ciudad de México, D.F.
www.upn.mx

ISBN 970-702-183-7 obra completa
ISBN 970-702-182-9 módulo 10

Impreso y hecho en México
ÍNDICE

Presentación del proyecto ...5

Introducción ..29

Áreas y Teorema de Pitágoras ...32

Objetivos ...33

Planeación de las actividades con los alumnos34
 Descripción de algunos de los materiales utilizados34
 Primera sesión ..35
 Segunda sesión ..36

Descripción de las actividades ...39
 Primera sesión ..39
 Segunda sesión ..41

Lo que hicieron los alumnos ...44
 Respuestas esperadas ..45
 Respuestas no esperadas ...45
 Dificultades ...47
 Reglas que no quedaron claras para el desarrollo de las actividades48
Lo que señalaron los alumnos ..48

Planeación de la sesión con los maestros ..49

Descripción de las actividades ..51

Lo que hicieron los maestros ..56
 Respuestas esperadas ...57
 Respuestas no esperadas ...57
 Dificultades ..58
 Reglas que no quedaron claras para el desarrollo de las actividades58

Lo que señalaron los maestros ..58

Recomendaciones para la enseñanza ...59

Ampliación del tema ...61
 Equivalencia de áreas ..61

Bibliografía ..75

Apéndice ...77

Anexo ..83
PRESENTACIÓN DEL PROYECTO

Tenoch Cedillo Ávalos

OBJETIVOS

La serie Enseñanza de las Matemáticas se desarrolla en el marco del Proyecto de Tecnología y Educación a Distancia en América Latina y el Caribe; esta serie tiene como propósito central fortalecer el conocimiento de las matemáticas escolares y las prácticas de enseñanza de los profesores que se desempeñan en el nivel de educación secundaria (7º-9º grados, 13-15 años de edad). En este propósito subyace la hipótesis de que un mejor desempeño de los docentes se reflejará en aprendizajes más sólidos y de mayor calidad en los alumnos.

Pretendemos que la discusión y análisis de los materiales que incluye esta serie, permitan a los maestros reflexionar sobre sus concepciones y prácticas de enseñanza, y que esta experiencia les proporcione elementos para responder preguntas como las que planteamos a continuación:

- ¿Cree que sus estudiantes no pueden resolver problemas a menos que usted les haya enseñando previamente cómo hacerlo?
- ¿Cree que si les pide a sus alumnos que resuelvan un problema ellos lo harán en formas muy similares?
- ¿Cree que puede emplear las soluciones que desarrollan sus estudiantes como fuentes para enriquecer sus estrategias de enseñanza? ¿Cómo?
- ¿Cree que es conveniente propiciar oportunidades para que sus alumnos resuelvan problemas usando sus propias estrategias? ¿Por qué?
- ¿Cree que es conveniente pedir a sus estudiantes que le informen cómo razonaron para resolver un problema dado? ¿Por qué?
- ¿Cree que es conveniente exigir a sus educandos que usen los procedimientos que les enseñó y que usted asuma la reproducción de esos procedimientos como sinónimo de comprensión?
También nos proponemos que la serie Enseñanza de las Matemáticas proporcione experiencias que permitan a los profesores desarrollar concepciones y prácticas de enseñanza como las que mencionamos enseguida.

Que el maestro:

- Genere un ambiente de trabajo que favorezca que sus estudiantes desarrollen habilidades matemáticas y destrezas operativas.
- Aproveche la evolución del pensamiento matemático de sus alumnos para planear el desarrollo del programa escolar.
- Genere oportunidades para que sus estudiantes resuelvan problemas sin necesidad de instrucciones explícitas.
- Utilice las formas en que sus estudiantes razonan para diseñar mejores estrategias de enseñanza.
- Desarrolle el curso en consonancia con lo que sus alumnos van aprendiendo.
- Sea capaz de proponer problemas distintos a cada equipo de trabajo, y en ocasiones a cada estudiante, de acuerdo con los intereses y capacidades de ellos.
- Evalúe el desempeño de sus estudiantes con base en las habilidades matemáticas que ellos desarrollen.
- Valore el potencial de la técnica de aprendizaje cooperativo como un recurso fructífero en la clase de matemáticas.

Materiales

Esta serie ofrece un conjunto de materiales dirigidos a profesores de matemáticas en servicio y a formadores de los futuros docentes de matemáticas, que se desempeñarán en el nivel de educación secundaria. La estrategia que proponemos para el logro del propósito antes mencionado, es brindar un programa de profesionalización docente que se basa en un análisis crítico de la práctica en el aula con la finalidad de enriquecerla. La investigación que hemos realizado en este
campo, ratifica enfáticamente que la experiencia que los profesores adquieren mediante el análisis de las prácticas de enseñanza de otros se refleja de manera favorable en sus concepciones y conocimientos sobre la disciplina, el aprendizaje y la docencia (Cedillo, 2003).

Los materiales que presentamos se describen brevemente en el esquema que se muestra a continuación.

- Videos de Sesiones de Trabajo con Alumnos, en las que se presenta evidencia de las capacidades y limitaciones de los estudiantes en la resolución de ciertos problemas matemáticos.

- Videos de Sesiones de Trabajo con Maestros, en las que éstos resuelven los mismos problemas que se propusieron a los estudiantes.

- Videos de Sesiones de Profundización, en las que los docentes analizan críticamente lo que ellos lograron en el marco de los logros de los alumnos.

- Propuestas didácticas en versiones impresa y digital, donde se aborda con mayor detalle los episodios presentados en los videos, se incorporan los materiales empleados en las sesiones de trabajo con alumnos y con profesores, y se incluye una sección para ampliar el horizonte de los temas matemáticos que se tratan en cada sesión.
Sujetos que participan en las sesiones de trabajo

Además del decidido apoyo otorgado por las más altas autoridades de las instituciones que patrocinaron este proyecto, así como de la invaluable colaboración del equipo técnico de televisión, participaron estudiantes de secundaria, maestros en servicio, profesores que condujeron las sesiones de trabajo en el aula, y un docente que estuvo a cargo de la producción y la dirección académica de todas las actividades del programa.

Los grupos escolares que participaron en el proyecto, cursan el segundo grado de secundaria (8º grado, 13-14 años de edad) en dos escuelas públicas de la ciudad de México que se destacan por su organización, compromiso de sus profesores y el buen desempeño de sus estudiantes. Los jóvenes que se observan en los videos son alumnos promedio de esas instituciones, no fueron seleccionados por poseer cualidades especiales. El grado escolar de los educandos se eligió en consonancia con los conceptos y conocimientos matemáticos que se abordan en las actividades de aprendizaje que se les propusieron. La intervención de esos grupos escolares, en esta serie, se debe a la colaboración de las autoridades educativas y de los directivos de las escuelas secundarias públicas que nos permitieron trabajar con sus estudiantes. La participación de los alumnos se organizó de acuerdo con los horarios de clases de su respectivo plantel, por esta razón, a lo largo de los videos, se pueden observar diferentes grupos de educandos y de maestros.

Todos los docentes que colaboraron en esta serie prestan su servicio en escuelas secundarias públicas ubicadas en la ciudad de México. Es necesario mencionar que los profesores que conducen las sesiones de trabajo, no son los maestros que normalmente dirigen a los grupos que se observan en los videos. La razón de esto es que las sesiones de trabajo con alumnos incluyen temas y actividades que no necesariamente tienen previstas los maestros de los grupos escolares, en los momentos en que este proyecto lo requería, por lo que fue indispensable contar con docentes específicamente asignados al proyecto con la finalidad de que dispusieran del tiempo y los recursos para preparar y conducir las sesiones de trabajo en el aula.
El hecho de que los profesores que condujeron las sesiones no hayan sido los docentes regulares de los grupos, presenta ventajas y desventajas, por ejemplo, nos parece importante mencionar que nuestros maestros no conocían a los estudiantes, situación que, por supuesto, no ocurre entre éstos y su maestro habitual. No obstante, los logros de los alumnos que se pueden observar en los videos, sugieren que la planeación y puesta en práctica de las actividades de aprendizaje son factores que influyen sensiblemente en un rápido establecimiento de una buena relación alumno-profesor, independientemente del tiempo que hayan tenido para relacionarse entre sí.

El trabajo en el aula

En los videos, se presentan episodios tal como ocurrieron en el aula; los videos muestran un acercamiento a la enseñanza que tiene como propósito poner en práctica los preceptos del constructivismo social, empleando la técnica del aprendizaje cooperativo, así como un enfoque del aprendizaje basado en la resolución de problemas. Utilizamos deliberadamente el término “sesiones de trabajo”, en lugar de “clase modelo”, para distinguir el enfoque de enseñanza que aquí mostramos del esquema tradicional que rápidamente se identifica con la cátedra del profesor, en la que éste “entrega” sus conocimientos a unos alumnos que están atentamente escuchándole para “recibirlos”. Estos conceptos se discuten más adelante con mayor amplitud.

En los videos de las sesiones de trabajo con los estudiantes y con los profesores, podrán observarse los aciertos, errores y momentos de incertidumbre que usualmente se suscitan en el proceso de resolución de problemas matemáticos no triviales, y en las vicisitudes propias de la conducción de una sesión de trabajo, cuyo éxito o fracaso depende esencialmente de la participación de cada uno de los integrantes del grupo con el que se está trabajando. En los videos, se observa un esfuerzo sostenido por parte del profesor que conduce la sesión para desempeñarse como un *promotor* del desarrollo del pensamiento matemático de
sus estudiantes, y no como un exposito que presenta una brillante cátedra a un auditorio atento y pasivo. Las sesiones de trabajo se centran en las participaciones de los alumnos, porque es a partir de sus respuestas que el profesor propiciará que se dé el siguiente paso en el avance de sus aprendizajes. Las intervenciones del maestro que conduce una sesión, se enfocan en la coordinación del trabajo del grupo, empleando todos los recursos que tiene a su alcance, en ese momento, para recuperar y enriquecer las participaciones de los estudiantes y, con base en esto, dar un horizonte más amplio al contenido matemático que se está explorando. En los videos podrá observarse que el maestro tenía preparado un guión para la clase; pero también se percibe que siempre estuvo atento a las respuestas de los alumnos para ir haciendo ajustes al guión de trabajo previsto y, de este modo, poder aprovechar de la mejor manera posible los aciertos y errores de los estudiantes, los cuales empleaba como puntos de partida en la búsqueda de una secuencia de enseñanza que estuviera en mejor consonancia con las distintas formas de razonamiento de sus alumnos.

CONTENIDOS MATEMÁTICOS

Para seleccionar los contenidos matemáticos de esta serie, se hizo una revisión de los programas de estudio para la escuela secundaria que se ofrecen en los países de América Latina y el Caribe, a partir de esta consulta se eligieron algunos temas de aritmética, álgebra y geometría, definiéndose, así, las ramas de las matemáticas escolares en que se ubicarían dichos contenidos. Posteriormente, se acudió a la literatura de investigación sobre aprendizaje de las matemáticas, con base en ésta fueron seleccionados los temas específicos dentro de cada rama de acuerdo con los siguientes criterios:

- La relevancia que les da la investigación por las dificultades que presentan para su enseñanza y aprendizaje.
La importancia que les da la investigación por su trascendencia como temas propedéuticos, sobre los que descansa la evolución del currículo escolar en su tránsito al currículo de matemáticas en los niveles de educación superior.

Finalmente, en el marco determinado por los alcances de este proyecto, se decidió abordar tres temas en aritmética y geometría, y cuatro en álgebra, quedando distribuidos como se muestra en el siguiente cuadro.

<table>
<thead>
<tr>
<th>Aritmética</th>
<th>Álgebra</th>
<th>Geometría</th>
</tr>
</thead>
<tbody>
<tr>
<td>Múltiplos y divisores</td>
<td>Patrones numéricos y generalización</td>
<td>Medición y semejanza de triángulos</td>
</tr>
<tr>
<td>Máximo común divisor</td>
<td>Juegos y regularidades algebraicas</td>
<td>Medición y razones trigonométricas</td>
</tr>
<tr>
<td>Mínimo común múltiplo</td>
<td>Ecuaciones de primer grado</td>
<td>Áreas y teorema de Pitágoras</td>
</tr>
<tr>
<td></td>
<td>Lectura y construcción de gráficas cartesianas</td>
<td></td>
</tr>
</tbody>
</table>

Organización y presentación de los contenidos

Videos

El desarrollo de cada tema constituye un *módulo* que está formado por dos videos y una *Propuesta didáctica* impresa. Cada tema se inicia con una *cápsula de video* que se preparó para presentar de forma amena y clara la información relevante del problema que se propone para que los alumnos lo resuelvan, y también se emplea para centrar la atención de los alumnos en el tema a tratar. Esa cápsula puede ser usada por los profesores que la consideren útil en su tarea docente. Algunas cápsulas incluyen recursos electrónicos de la geometría dinámica, o tablas con datos que pueden ser utilizadas en las clases que preparen los maestros que reciben estos materiales.
El primer video de cada módulo incluye las dos sesiones de trabajo que se emplearon con alumnos para desarrollar el tratamiento del tema correspondiente, cada sesión se tiene una duración máxima de 50 minutos. El tema se aborda a partir de la resolución de uno o más problemas matemáticos; estas sesiones de trabajo se realizan con la participación activa de un grupo de estudiantes. El núcleo en el estudio de un tema es la resolución de problemas que representan un reto para el intelecto de los alumnos, por esto, sus intervenciones nunca consisten en la repetición de conceptos u otros conocimientos que previamente se les habían enseñado, en vez de esto, las participaciones de los estudiantes ofrecen una reelaboración o una aplicación creativa de conceptos y conocimientos que los conducen a proponer ideas plausibles que eventualmente se concretan en la resolución de un problema. Dada la complejidad de los ejercicios que se propusieron, se decidió apoyar la actividad de los estudiantes utilizando la técnica de aprendizaje cooperativo. Esta técnica exige la colaboración conjunta y creativa de todos los miembros de un equipo de trabajo para realizar una tarea, en otras palabras, requiere que el trabajo en equipo, además de necesario, sea más productivo que el trabajo individual. Dada la importancia que tuvo en el proyecto el uso de la técnica de aprendizaje cooperativo, más adelante le dedicamos una sección para un análisis más amplio.

El segundo video del módulo incluye una secuencia que muestra la Sesión de Trabajo con Maestros y la Sesión de Profundización. La Sesión de Trabajo con Maestros permite observar las formas en que ellos abordaron problemas iguales o similares a los que se propusieron a los alumnos. Es importante señalar que cuando se pidió a los maestros que resolvieran esos problemas, aún no habían visto los videos de las sesiones de trabajo con los alumnos, esto se realiza en la Sesión de Profundización.

En las sesiones de profundización, se pide a los profesores que vean atentamente los videos de las sesiones con alumnos, y que registren individualmente sus observaciones de acuerdo a un guión que se les proporcionó; el guión permite que los docentes incluyan comentarios sobre aspectos no considerados en él. Una vez
que han hecho esto, se pide a los maestros que discutan en equipos de trabajo las anotaciones que registraron de manera individual; después de esto, se organiza una mesa de discusión con todos los equipos reunidos, donde debaten acerca de sus observaciones y hacen propuestas respecto a las implicaciones que se derivan de su experiencia en estas sesiones de trabajo en torno a su práctica docente cotidiana. La Sesión de Profundización concluye con la sección Reflexiones después de la práctica, que presenta el coordinador académico de esta serie.

Propuestas didácticas

Se elaboró una *Propuesta didáctica* para cada uno de los módulos que comprende esta serie. Las propuestas didácticas se presentan en formato impreso y en formato digital. Estos materiales tienen como propósito exponer información adicional que permita analizar con mayor acuciosidad las sesiones de trabajo que se muestran en los videos. En cada propuesta se proporciona una descripción detallada sobre las actividades que se llevaron a cabo en las sesiones de trabajo con alumnos y con maestros. Asimismo, se incluyen cada uno de los materiales que se emplearon, al igual que un ensayo crítico de lo que ocurrió durante el tratamiento de cada tema, en términos de los logros de los estudiantes en el marco de lo que originalmente fue el guión de trabajo para cada sesión. Por lo anterior, **recomendamos enfáticamente que antes de observar los videos se lea la Propuesta didáctica correspondiente**.

Los asuntos que se abordan en cada *Propuesta didáctica* se describen brevemente a continuación.

Presentación y objetivos del tema

Además de los objetivos de cada sesión de trabajo con los alumnos, este apartado incluye un ensayo en el que se presentan los argumentos considerados para seleccionar el contenido matemático que se aborda, y una descripción del guión de trabajo que empleó el profesor para desarrollarlo.
Materiales de las sesiones de trabajo con los alumnos
Esta sección proporciona información detallada sobre cada una de las actividades que se propusieron a los estudiantes.

Materiales de las sesiones de trabajo con los maestros
Este apartado ofrece información pormenorizada sobre cada una de las actividades que se propusieron a los profesores.

Lo que aprendieron los alumnos
En esta parte, el profesor que estuvo a cargo del desarrollo de la sesión de trabajo, presenta un ensayo sobre los logros de los estudiantes; el ensayo contiene un análisis entre lo esperado por el maestro y las respuestas no esperadas que ofrecieron los alumnos, y cómo éstas lo condujeron a modificar, sobre la marcha, el guión que había preestablecido para realizar su trabajo.

Recomendaciones para la enseñanza
Con base en el análisis de los logros de los estudiantes, y de las vicisitudes que tuvo que sortear, el profesor que estuvo a cargo de la conducción del trabajo presenta una serie de reflexiones que se expresan como recomendaciones para la enseñanza.

Ampliación del tema
Este apartado tiene como propósito profundizar en el tratamiento del contenido matemático que se abordó en la sesión de trabajo. Se incorporan nuevos elementos y recursos didácticos cuya finalidad es ampliar el conocimiento de los contenidos matemáticos que se trataron en las sesiones de trabajo con alumnos y los correspondientes con maestros.

El contexto internacional y principios que orientan este proyecto
Los resultados obtenidos por los estudiantes latinoamericanos en las evaluaciones internacionales que se han efectuado recientemente, han acentuado la atención
que los ministerios de educación dedican a la enseñanza y aprendizaje de las matemáticas (Beaton et al., 1996; OECD, 2000). El análisis de esas evaluaciones sugiere enérgicamente que para mejorar esos resultados deben instrumentarse nuevos programas orientados a la actualización, tanto de las formas de enseñanza como del conocimiento de la disciplina por parte de los maestros de matemáticas en servicio.

La investigación realizada en los últimos 30 años sobre el aprendizaje de las matemáticas, ha proporcionado un conocimiento importante que plantea la necesidad de nuevas estrategias de enseñanza, nuevos paradigmas para la formación de profesores, un nuevo currículo y nuevas formas de evaluación (Kilpatrick, 1992). Los resultados de esas investigaciones han ejercido una fuerte influencia en el diseño de los planes y programas de estudio de la enseñanza básica y, por lo mismo, han surgido nuevas exigencias en el desempeño de los docentes, por ejemplo, en muchos países se incluyeron en los programas de estudio nuevas líneas temáticas, como preálgebra, precálculo, probabilidad y estadística.

La investigación sobre la enseñanza ha cambiado del paradigma proceso-producto —en el que el objeto de indagación son los comportamientos del profesor— a estudios abocados a sus concepciones y criterios para la toma de decisiones en el aula. Asimismo, las teorías que se enmarcan en el constructivismo social también han tenido impacto en los programas de formación de profesores y el currículo de la escuela básica. Brevemente expuesto, estas teorías conciben el conocimiento como un producto del trabajo intelectual de comunidades formadas por individuos creativos; estas corrientes de pensamiento se reflejan en cursos y materiales que intentan que el profesor deje su papel como transmisor de conceptos, hechos básicos y destrezas, para que se desempeñe como tutor del desarrollo del pensamiento matemático de sus estudiantes (Cobb et al., 1990).

Actualmente, se espera que los profesores hagan evidente en su práctica profesional que están convencidos de que sus estudiantes no son “recipientes que esperan ser llenados”, y los entiendan como sujetos intelectualmente creativos, capaces de hacer preguntas no triviales, de resolver problemas y de construir teorías y conocimientos plausibles. Lo anterior exige que el maestro despoje
al libro de texto, y a él mismo, de su papel como autoridad intelectual en la clase y la deposité en argumentos rigurosos producidos por él y los estudiantes (Thompson, 1992).

Esa nueva perspectiva de enseñanza requiere que el profesor conozca el nivel de desarrollo del pensamiento matemático de sus alumnos, que construya materiales intelectualmente ricos, y propicie un ambiente de trabajo en el que el razonamiento de los educandos pueda ser, al mismo tiempo, apoyado y motivado.

A finales de los ochenta, se desarrollaron tres perspectivas distintas para estudiar los procesos de cambio en las prácticas de los profesores, cada una con fundamentos teóricos diferentes. La perspectiva piagetiana, que se sustenta en la teoría de que un cambio en las ideas de los docentes sobre la naturaleza del aprendizaje y de las matemáticas, requiere necesariamente un proceso de desequilibrio de las ideas previas y la reconstrucción de ideas más poderosas (Schifter, 1993; Schifter y Fosnot, 1993; Schifter y Simon, 1992). La corriente de las ciencias cognitivas propone que los cambios en el profesor se dan a través de que modifique el contenido y organización del conocimiento que posee, en consonancia con la evolución del razonamiento matemático de sus estudiantes (Carpenter et al., 1988; Fennema et al., 1996; Peterson et al., 1989). La postura del constructivismo social expone que lo que permite a los profesores resolver los conflictos entre sus creencias sobre el aprendizaje y los avances que se observan en sus estudiantes, es el proceso de negociación entre ellos y sus alumnos sobre las normas para validar la construcción de los conceptos e ideas matemáticos (Ball, 1988; McDiarmid y Wilson, 1991).

La serie Enseñanza de las Matemáticas del Proyecto de Tecnología y Educación a Distancia en América Latina y el Caribe, se propone compartir con los profesores de matemáticas en servicio y los formadores de futuros docentes, algunas estrategias plausibles que ejemplifican, mediante episodios de trabajo en el salón de clases, cómo llevar a la práctica en el aula los planteamientos del constructivismo social.
EL MODELO DIDÁCTICO

En el periodo 2000-2003, se llevó a cabo en México un estudio con 800 maestros de matemáticas en servicio, en el que se evaluaron los efectos de la aplicación de un enfoque didáctico no convencional en sus prácticas de enseñanza y conocimiento matemático (Cedillo, 2003). Los resultados de ese estudio muestran vías promisorias para favorecer los aprendizajes de los estudiantes, aun con profesores cuya docencia está anclada en principios y concepciones tradicionales, y con un débil conocimiento de la disciplina que enseñan. Expuesto sucintamente, ese enfoque didáctico consiste en enseñar las matemáticas escolares de manera similar a como aprendemos el lenguaje materno, esto es, a través de su uso; el uso del lenguaje matemático en actividades adecuadamente diseñadas, permite que los estudiantes vayan asignando significados plausibles a ese sistema de signos.

En el aula, lo anterior se traduce en que el profesor no parte de exponer reglas, definiciones y ejemplos, en lugar de esto, el maestro propone una actividad (problema) que le permite establecer una interacción con sus estudiantes a partir de las formas de razonamiento que ellos desarrollan. El progreso de los alumnos en la actividad depende de la comprensión que logre el profesor de sus formas no ortodoxas de comunicación. Esto implica que el docente debe aceptar que sus estudiantes aprenden cada uno a un paso distinto, y que debe saber escucharlos para aprender acerca de las formas en que ellos razonan. Esta forma de enseñanza exige que el profesor abandone la exposición al frente del grupo como estrategia de interlocución, porque esto parte del supuesto de que el maestro puede hacer avanzar a todos los estudiantes del grupo al mismo ritmo. Además, es necesario que el docente desarrolle habilidades que le permitan relacionar los avances no convencionales de sus alumnos con los temas matemáticos formalmente establecidos, lo cual requiere la capacidad de desarrollar el currículo a partir de los logros de los estudiantes.
EL APRENDIZAJE COOPERATIVO

El aprendizaje cooperativo puede describirse como una relación entre estudiantes que les requiere (Johnson y Johnson, 1989):

- Necesitarse unos a otros para realizar una tarea.
- Un ejercicio de responsabilidad individual, en el que cada uno tiene que contribuir y aprender.
- Desarrollar habilidades para relacionarse: comunicación, confianza en sí mismos y en los demás, asumir eventualmente el liderazgo, tomar decisiones y resolver conflictos.

La técnica de aprendizaje cooperativo favorece que los estudiantes no solamente aprendan los contenidos propios de una disciplina, sino que desarrollen habilidades para cultivar relaciones personales con sus compañeros que probablemente no desarrollarían en una clase tradicional. Entre otras cosas, esto puede ocurrir si el maestro toma en cuenta la relación entre el desempeño del grupo y el individual, la preparación de sus estudiantes y las dificultades comunes que éstos presentan.

Se han reportado resultados de investigación que señalan que el éxito del aprendizaje cooperativo depende en buena medida de que los estudiantes se propongan objetivos grupales claramente definidos, y que asuman responsabilidades individuales bien especificadas (Leinken y Zaslavsky, 1999). Lindauer y Petrie (1997), sugieren que el sistema de evaluación del profesor puede apoyar al logro de metas colectivas, si lo estructura de manera que los estudiantes sean evaluados individualmente por su trabajo, y que el trabajo individual se oriente a que colaboren con sus compañeros en favor del éxito del grupo. Por una parte, la formulación y el logro de objetivos grupales en el aprendizaje cooperativo, proporciona a los alumnos una razón para trabajar juntos (Johnson y Johnson, 1989). Por otra parte, el exigir que cada individuo tenga responsabilidades particulares, asegura que todos los estudiantes se beneficiarán de la experiencia, incrementando su comprensión, a la vez que permite al maestro asegurarse
de que todos en el grupo aprendan los nuevos conceptos. De esta manera, el éxito que el grupo tenga en alcanzar sus objetivos depende del nivel de logro que alcance cada uno de sus miembros.

El establecimiento de objetivos grupales y un sistema de evaluación que recompense el éxito puede hacerse de varias maneras, por ejemplo, el profesor puede reforzar en sus estudiantes el valor de ayudarse unos a otros, si evalúa el nivel de logro del equipo con base en el aprendizaje de cada estudiante (Stevens, Slavin y Farnish, 1991; Posamentier y Stepelman, 1999). Más específicamente, el maestro puede asignar un porcentaje extra a la calificación de un equipo de trabajo en el que todos sus miembros lograron cierto puntaje. Las acciones del docente que refuerzan los objetivos grupales y la responsabilidad individual, ayudan a que los alumnos se preocupen por el éxito de sus compañeros, a que desarrollen una mejor capacidad de escucha, y a que valoren métodos alternativos para resolver problemas.

Lo anterior implica que los estudiantes deben estar específicamente preparados para participar en un ambiente de aprendizaje cooperativo, y que los profesores establezcan condiciones que garanticen experiencias exitosas de aprendizaje. El aprendizaje cooperativo no se da por el simple hecho de que los estudiantes trabajan en equipos durante la clase, esta técnica de trabajo en el aula sólo es provechosa cuando los miembros de un grupo se ven a sí mismos como parte de un equipo que debe alcanzar un objetivo de manera conjunta, ante una tarea que individualmente es mucho más difícil de llevar a cabo que haciéndolo con la colaboración de otros (Posamentier y Stepelman, 1999). El aprendizaje cooperativo se basa en la premisa de que los alumnos que trabajan juntos son responsables no sólo de su aprendizaje, sino también del de sus compañeros (Lindauer y Petrie, 1997), para esto, los estudiantes deben aprender a escuchar a los demás y a valorar el hecho de que un problema puede ser abordado en más de una forma. En síntesis, podemos decir que el aprendizaje cooperativo es una buena estrategia de trabajo en el aula; pero ésta no tiene éxito sin preparación.

Slavin (1990) afirma que los profesores pueden enfrentar algunas dificultades al aplicar la técnica de aprendizaje cooperativo, y sólo obtendrán resultados
provechosos si aprenden a emplearlo correctamente en la clase. El aprendizaje cooperativo puede ir en detrimento del aprovechamiento de los estudiantes, los alumnos menos avanzados pueden copiar el trabajo de los más adelantados del grupo, y el resultado puede ser más bajo del que ese alumno podría haber obtenido en una clase tradicional. Otra posible dificultad es que los maestros deben estar preparados para ceder parte del control que, tradicionalmente, tienen sobre las actividades que se realizan en el aula. Si bien es necesario asegurarse de que los estudiantes están realmente trabajando en un ambiente de aprendizaje cooperativo, es difícil evitar que hagan más ruido. Algunos docentes podrían percibir el ruido como un indicio de pérdida de control.

EL APRENDIZAJE COOPERATIVO EN LA CLASE DE MATEMÁTICAS

Hay investigaciones que muestran que los beneficios del aprendizaje cooperativo se reflejan en un mejor desempeño escolar, mejores habilidades para comunicarse e interacciones sociales y académicas exitosas (Slavin, 1991; Stevens, Slavin y Farnish, 1991; Whicker, Bol y Nunnery, 1997; Walmsley y Muñiz, 2003). Los efectos del aprendizaje cooperativo en el desempeño de los alumnos son muy impresionantes, los logros de los estudiantes que pueden observarse en los videos de esta serie ofrecen evidencias a este respecto. Esto se debe a diversas razones, en el trabajo cooperativo los alumnos ven cómo sus compañeros se encuentran en diferentes etapas de dominio de las tareas que enfrentan, y se ayudan unos a otros, por ejemplo, cuando los estudiantes interactúan en forma cooperativa hacen el intento por explicar sus estrategias a los demás, empleando las palabras de sus compañeros más débiles (Stevens, Slavin y Farnish, 1991). En muchas ocasiones, los educandos que proporcionan la explicación pueden lograr así una comprensión más clara de la tarea que están abordando. Cuando se pide a los estudiantes que expliquen, detallen y defiendan sus posturas ante los demás, se esfuerzan en expresar más cuidadosamente sus ideas. Asimismo, los alumnos que escuchan las explicaciones de otros se esfuerzan en comprender
otras formas de abordar una tarea determinada. El observar a los demás y practicar en este tipo de ambientes de trabajo, ayuda a los estudiantes a interiorizar los conceptos que están intentando comprender o dominar (Stevens, Slavin y Farnish, 1991).

Probablemente, uno de los mayores beneficios del aprendizaje cooperativo es que incrementa la capacidad de los alumnos para comunicarse usando el lenguaje de las matemáticas, y que este tipo de comunicación les ayuda a comprender mejor esta disciplina (Artzt, 1999). Johnson y Johnson (1989, p. 235) afirman que “si la instrucción en matemáticas procura ayudar a los estudiantes a pensar matemáticamente, a comprender las conexiones entre diversos procedimientos y hechos matemáticos, y a ser capaces de aplicar el conocimiento matemático formal de manera flexible y significativa, entonces, es indispensable emplear el aprendizaje cooperativo en las clases de matemáticas”. De acuerdo con estos autores, el aprendizaje cooperativo hace que las matemáticas se aprendan de manera activa, en vez de pasiva. Otros autores sugieren que, mediante la técnica del aprendizaje cooperativo, los profesores promueven que sus estudiantes expliquen lo que entienden, porque eso los obliga a integrar y ampliar su conocimiento de manera diferente (Stevens, Slavin y Farnish, 1991).

Hay resultados de investigación que confirman la convicción de muchos maestros de que los alumnos aprenden mejor de sus compañeros cuando se les pide que expliquen cómo llegaron a las respuestas; los profesores que piden a los estudiantes que expliquen cómo resolver un problema frente al grupo, ayudan a que todos aprendan más y enfatizan las habilidades para expresarse acerca de conceptos matemáticos (NCTM, 2000). El aprendizaje cooperativo permite a los educandos dar y recibir explicaciones detalladas, esto les ayuda a aprender más que a los estudiantes que simplemente reciben las respuestas correctas (Stevens, Slavin y Farnish, 1991). Es importante ejercitar la capacidad de comunicar ideas matemáticas para apoyar el desarrollo que el alumno tenga en esa disciplina. Leiken y Zaslavsky (1999) reportan que el uso del aprendizaje cooperativo motiva a los estudiantes a participar activamente en el aprendizaje de las matemáticas, y a comunicarse entre ellos sobre cuestiones de esta disciplina.
Otro beneficio del aprendizaje cooperativo es que permite a los alumnos trabajar con otros en el logro de un objetivo común y desarrollar habilidades para usar las matemáticas en interacciones sociales. De acuerdo con Whicker *et al.* (1997), algunos de los resultados a corto plazo incluyen un incremento en el aprendizaje, en la retención y en el pensamiento crítico. Comparado con un sistema competitivo e individualista, las experiencias del aprendizaje cooperativo promueven una alta autoestima en los estudiantes (Johnson, Johnson y Holubec, 1984; Johnson y Johnson, 1989). El aprendizaje cooperativo puede reforzar el sentimiento de autoaceptación del alumno, en tanto que la competitividad puede afectar de manera negativa dicha aceptación, y las actitudes individualistas tienden a estar relacionadas con un rechazo básico de sí mismo (Johnson, Johnson y Holubec, 1984). Los alumnos, generalmente, disfrutan la experiencia de trabajar en forma cooperativa, y les importa que sus compañeros los tengan en buen concepto. La necesidad de ser aceptados también los ayuda a lograr ser exitosos escolarmente, esta percepción de éxito incrementa su autoestima.

Los resultados a largo plazo del aprendizaje cooperativo incluyen la habilidad para ser contratados para trabajar y tener éxito en su carrera (Johnson y Johnson, 1989). Muchos empleadores valoran a un empleado con habilidades para comunicarse, con responsabilidad, iniciativa, interacción interpersonal y poder de decisión. Todas estas cualidades pueden ser desarrolladas al tener experiencias de aprendizaje cooperativo. El aprendizaje cooperativo no sólo ayuda a los estudiantes a aprender matemáticas, sino que coadyuva en su preparación para la vida después de graduarse.

A manera de síntesis podemos sugerir que el aprendizaje cooperativo puede ser exitoso si:

- Se emplea para abordar actividades que exijan la colaboración del grupo.
- Los profesores cuentan con algún tipo de sistema de recompensas grupales que contemple la responsabilidad individual.
- Los maestros logran crear una actitud en sus alumnos que les conduzca a escuchar atentamente las ideas de los demás.
COMENTARIOS FINALES

En la serie Enseñanza de las Matemáticas asumimos la premisa de que en la práctica profesional los sujetos tienen experiencias que producen cambios en sus conocimientos y creencias. Este principio es una combinación de lo planteado por el constructivismo social y las ciencias cognitivas. Por una parte, asumimos que la práctica profesional incluye la interacción creativa entre profesores, y de éstos con los estudiantes; por otra parte, implica que los individuos vamos modificando nuestras concepciones y acciones a partir del conocimiento que adquirimos sobre las formas de razonamiento de otros sujetos. La evidencia obtenida de la investigación sugiere que lo que esencialmente promueve cambios en los profesores son ciertos episodios que se dan en el aula, que les permiten atestiguar lo que sus estudiantes pueden lograr sin que “ellos se los hayan enseñado” (Cedillo y Kieran, 2003).

Indudablemente, serán los profesores que hagan uso de los materiales que se proporcionan en esta serie, los que emitan un mejor juicio sobre el alcance y pertinencia de los propósitos que nos hemos planteado, y sobre las estrategias de trabajo que en este proyecto hemos empleado.
BIBLIOGRAFÍA

INTRODUCCIÓN

Dos triángulos son semejantes entre sí cuando son indistinguibles excepto por su tamaño.
G. W. Leibniz (1646-1716)

En los 1950, se enunciaron consignas en relación con la enseñanza de la geometría como la siguiente: “Permitan que Arquímedes y no Euclides sea nuestro guía” (Meder, 1958, p. 584). También se hicieron aseveraciones en el sentido de que Euclides había escrito Los elementos, una obra sobre geometría y aritmética, para preparar filósofos y no matemáticos (véanse, por ejemplo: Meder, 1958; y Daus, 1960). Pero conviene hacer notar que incluso Arquímedes (ca. 287-212 a. C.) basó sus investigaciones en Euclides: Proclo nos informa que “Arquímedes, quien vivió después de la época del primer Ptolomeo, menciona a Euclides” (Proclus, 1992, p. 56).

Varios escritores han valorado la importancia histórica de esa obra de Euclides por su influencia en todas las generaciones desde que fue escrita: durante más de dos milenios ha mostrado a la humanidad cómo usar el poder del razonamiento deductivo para lograr el conocimiento. Gemignani (1967, p. 162) concluye que “la obra de Euclides [...] durante mucho tiempo fue una fuente de inspiración para los matemáticos y es el fundamento y la guía para algunas partes de las matemáticas más finas incluso hasta la época presente”.

En cuanto al aprendizaje de la geometría en la educación secundaria (grados 7 a 9), desde 1950 se dio énfasis al rigor lógico y se hicieron a un lado o se ignoraron las relaciones con las experiencias de los alumnos en el mundo que los rodea. Esta pedagogía antihistórica se basó en la suposición de que, para un aprendizaje óptimo, las matemáticas se deberían enseñar en una secuencia lógica de acuerdo con su organización formal. Este enfoque no ha tenido éxito.
Desde los 1980, se ha fortalecido la postura de que la investigación educativa puede contribuir al mejoramiento de las prácticas de enseñanza de las matemáticas escolares (un corpus distinto al de las matemáticas mismas, aunque fuertemente ligado a éstas). Más importante aún ha sido el señalamiento de que la investigación educativa en las matemáticas escolares puede “servir como una herramienta analítica para estudiar las relaciones entre las matemáticas y la sociedad en su conjunto” (Schubring, 1992, p. 49). Hans Freudenthal (1992, p. 27), en la parte final de una conferencia que dio en 1980, señaló la importancia de la investigación educativa siempre que se llevara a cabo en el ámbito de la educación y no que se hiciera investigación de la educación.

En años recientes, se ha puesto menos énfasis en el enfoque axiomático de la enseñanza de la geometría en la educación secundaria. Ahora se intenta que en este nivel educativo las ideas, nociones y conceptos de la geometría se aborden con base en la experiencia de los alumnos, auxiliándose de objetos tangibles como lo puede ser un geoplano de madera, el doblado de papel o unas ligas de hule. Actualmente no es una meta dentro del aprendizaje de la geometría en la educación secundaria que los alumnos desarrollen habilidades en los métodos de demostración.

Hay reportes de investigación que concuerdan en la conveniencia de reintegrar el razonamiento espacial en las matemáticas escolares. Bishop (1992, p. 29), por ejemplo, explicó que la geometría trata de la matematización del espacio; a este respecto señaló que existen tres áreas conceptuales en las que aparecen obstáculos para los alumnos en el aprendizaje de la geometría: a) aprendizaje acerca del espacio, b) aprendizaje acerca de la matematización del espacio, y c) aprendizaje acerca de la geometría; en su tratamiento de esta tercer área Bishop destacó el papel que desempeña la visualización.

En el desarrollo de las distintas actividades diseñadas para los tres módulos de geometría de la serie de matemáticas, tanto alumnos como maestros participaron en el planteamiento de conjeturas, sin que se tuviera como meta final la demostración formal de las mismas: para validarlas, incluso, se utilizaron procedimientos de índole empírica (mediciones directas, por ejemplo). Los tres temas generales
de geometría seleccionados para desarrollarse en las sesiones de trabajo con los alumnos y en los talleres con los maestros fueron los siguientes:

- Medición y semejanza de triángulos
- Medición y razones trigonométricas
- Áreas y Teorema de Pitágoras

En las sesiones de trabajo con los alumnos y en los talleres con los maestros, que se videograron, los tres temas se desarrollaron estudiando sus relaciones con otras áreas de las matemáticas escolares, como la aritmética, el álgebra, y el registro y procesamiento de la información. Por otra parte, los temas de geometría mencionados se incluyen en los programas oficiales de la educación secundaria en la mayoría de los países, particularmente, en los de América Latina y el Caribe.

En este módulo 10 de esta propuesta didáctica se incluye el Teorema de Pitágoras, en el módulo 8 se estudian los criterios de semejanza de triángulos y en el 9 se presenta una introducción al estudio de la trigonometría en la educación secundaria.

Como se mencionó, durante el desarrollo de las sesiones de trabajo no se puso énfasis en cuestiones formales de demostración, aunque sí se validaron los resultados a que se llegaba. La atención se centró en el descubrimiento por parte de alumnos y maestros, partiendo de lo que ellos ya conocían y avanzando aún más a partir de sus nuevos logros.

En el apartado de “Ampliación del tema” de cada uno de los módulos 8, 9 y 10, se han desarrollado presentaciones de resultados relacionados con los temas seleccionados. Esto se llevó a cabo bajo la perspectiva de que la recreación de determinados resultados matemáticos sea útil a los maestros para fortalecer su conocimiento de las matemáticas que están enseñando, y que aborden esos temas un poco más allá de lo que los programas de estudio para sus alumnos les exigen. Así, se incluye una demostración de la “fórmula de Herón” en cada uno de estos tres módulos como una muestra de la interrelación de los temas seleccionados para la sección de geometría. Esa “fórmula” es un algoritmo que permite calcular el área de un triángulo dadas las longitudes de sus tres lados.
ÁREAS Y TEOREMA DE PITÁGORAS

Para el diseño de las actividades del módulo 10, se tuvo como meta que los alumnos descubrieran las relaciones que se dan entre las áreas de cuadrados construidos sobre los lados de triángulos obtusángulos, acutángulos y rectángulos. Inicialmente, se hizo el cálculo de áreas contando el número de cuadrados de una determinada unidad de longitud que completan el área de alguna figura plana, de modo que interviniera la transformación (descomposición) de figuras equivalentes en área.

Después de comparar en triángulos obtusángulos y acutángulos el área del cuadrado construido sobre su lado más largo con las de los cuadrados construidos sobre sus otros dos lados, la pregunta que surge es si existe algún tipo de triángulo para el cual la suma de las áreas de los cuadrados construidos sobre dos de sus lados es igual al área del cuadrado construido sobre el tercer lado. Siguiendo este camino, los alumnos plantearon la conjetura de que esa relación se cumple en un triángulo rectángulo y la validaron mediante transformaciones de áreas usando un geoplano. Esta relación especial de equivalencia de áreas es conocida como Teorema de Pitágoras.
Así, los alumnos construyeron primero un triángulo rectángulo y luego verificaron la igualdad de áreas según se enuncia en el teorema de Pitágoras. Sin embargo, no debe pasarse por alto que en realidad también plantearon sutilmente como conjetura el resultado recíproco: si el área de un cuadrado construido sobre un lado de un triángulo es igual a la suma de las áreas de los cuadrados construidos sobre los otros dos lados entonces el triángulo es rectángulo.

Objetivos

Los objetivos planteados para las sesiones de trabajo en el módulo de **Áreas y Teorema de Pitágoras** fueron los siguientes.

Que los alumnos:

- Determinaran el área de cuadriláteros, triángulos y pentágonos representados mediante ligas de hule en un geoplano, usando como unidad de área un cuadrado cuya longitud de cada uno de sus lados fuese la distancia entre dos pivotes consecutivos del geoplano en una misma hilera horizontal o vertical.
- Transformaran unas figuras rectilíneas en otras, equivalentes en área, para calcular el área de cuadrados construidos sobre los lados de un triángulo.
- Compararan las áreas de los cuadrados construidos sobre los lados de un triángulo obtusángulo.
- Compararan las áreas de los cuadrados construidos sobre los lados de un triángulo acutángulo.
- Plantearan conjeturas sobre la existencia de algún tipo de triángulo, en el que la suma de las áreas de los cuadrados construidos sobre dos de sus lados sea igual al área del cuadrado construido sobre el tercer lado.
- Representaran mediante una fórmula el enunciado del Teorema de Pitágoras.
Descripción de algunos de los materiales utilizados

En las dos sesiones de trabajo con los alumnos y en el taller con los maestros, se utilizaron geoplanos de madera con clavos y ligas de hule de distintos colores. Cada geoplano se hizo con un cuadrado de madera de 38 cm × 38 cm, en el que se insertaron 12 clavos en cada una de 12 filas (144 clavos en total), esto es, cada geoplano estaba formado de 12×12 pivotes, como se representa en la siguiente figura. La separación de un clavo a otro en la misma fila en los geoplanos de madera era de 3 cm, y la separación entre una y otra fila también fue de 3 cm. Asimismo, se contó con fotocopias de una representación gráfica del geoplano de madera (ésta se incluye como anexo en el apéndice de este módulo).

Sólo a los alumnos se les dieron hojas de trabajo que incluían una representación de cada problema que tenían que resolver usando los geoplanos de madera con las ligas (estas hojas de trabajo se incluyen en el apéndice de este módulo). También, únicamente con los alumnos, se dispuso de la representación de los problemas planteados en cartulinas pegadas en el pizarrón simulando un rotafolios.
Primera sesión

Inicio (1 min). El maestro saluda al grupo y explica brevemente que se verá una videograbación para motivar el tema de la sesión de trabajo.

Proyección de una videograbación (7 min). La videograbación trata del planteamiento de un problema sobre la determinación del área de un terreno cuyos linderos son segmentos de líneas rectas los cuales forman un pentágono irregular (cápsula en videograbación, reproductora de videograbaciones y televisión).

Hoja de trabajo 1 (5 min). Explicación del problema planteado en la _Hoja de trabajo 1_, en la que se incluye la representación de un geoplano con dos rectángulos de los cuales se tiene que determinar su área. Los alumnos trabajan en equipo bajo supervisión del maestro para resolver el problema planteado, y después integrantes de uno de los equipos exponen ante el grupo los detalles de su trabajo realizado (fotocopias, hojas en blanco, plumines, geoplanos de madera, ligas de hule de distintos colores, pizarrón, rotafolios y plumones).

Hoja de trabajo 2 (5 min). Explicación del problema planteado en la _Hoja de trabajo 2_, en la que se incluye la representación de un geoplano con dos triángulos, de los cuales se tiene que determinar su área. Los alumnos trabajan en equipo bajo supervisión del maestro para resolver el problema planteado, y después integrantes de uno de los equipos exponen ante el grupo los detalles de su trabajo realizado (fotocopias, hojas en blanco, plumines, geoplanos de madera, ligas de hule de distintos colores, pizarrón, rotafolios y plumones).

Hoja de trabajo 3 (12 min). Explicación del problema planteado en la _Hoja de trabajo 3_, en la que se incluye la representación de un geoplano con un pentágono rectilíneo irregular del cual se tiene que determinar su área. Los alumnos trabajan en equipo bajo supervisión del maestro para resolver el problema planteado, y después integrantes de uno de los equipos exponen ante el grupo los detalles de su trabajo realizado (fotocopias, hojas en blanco, plumines, geoplanos de madera, ligas de hule de distintos colores, pizarrón, rotafolios y plumones).
Discusión (3 min). Se discute con el grupo de alumnos la forma en que los expositores resuelven el problema planteado en la Hoja de trabajo 3; se verifican resultados y se compara con otros posibles procedimientos de los demás equipos.

Hoja de trabajo 4 (12 min). Explicación del problema planteado en la Hoja de trabajo 4, en la que se incluye la representación de un geoplano con un triángulo obtusángulo; según se explica en esta hoja de trabajo, se trata de construir un cuadrado sobre cada uno de los lados del triángulo, determinar cuál de los tres es el cuadrado más grande, y comparar el área de éste con la de los otros dos cuadrados juntos. Los alumnos trabajan en equipo bajo supervisión del maestro para resolver el problema planteado, y después integrantes de uno de los equipos exponen ante el grupo los detalles de su trabajo realizado (fotocopias, hojas en blanco, plumines, geoplanos de madera y ligas de hule de distintos colores, pizarrón, rotafortios y plumones).

Discusión (3 min). Se discute con el grupo de alumnos la forma en que resuelven el problema quienes exponen, para verificar resultados y comparar con otros posibles procedimientos de los demás equipos.

Conclusión y despedida (2 min). El maestro describe brevemente lo logrado en esta sesión de trabajo y enuncia lo que se tratará en la siguiente sesión; finalmente, se despedir.

Segunda sesión

Inicio (2 min). El maestro saluda al grupo; se inicia esta segunda sesión resumiendo el trabajo que los alumnos realizaron en la primera sesión, durante la que resolvieron los problemas planteados en las hojas de trabajo 1 a 4.

Resumen (3 min). Se exhibe una videograbación de los planteamientos de los problemas resueltos en la primera sesión, y el maestro hace un breve resumen de cómo se calcularon las áreas de los cuadrados construidos sobre los lados del triángulo que aparece en la Hoja de trabajo 4 durante la primera
sesión (cápsula en videograbación, reproductora de videograbaciones y televisión).

Exposición (3 min). Integrantes de uno de los equipos, distinto al que expuso en la primera sesión, presentan ante el grupo los detalles de su trabajo realizado para resolver el problema planteado en la *Hoja de trabajo 4*. Luego, el maestro presenta un breve resumen de la comparación del área del cuadrado más grande que se construyó sobre uno de los lados del triángulo que aparece en la *Hoja de trabajo 4* con las áreas de los cuadrados construidos sobre los otros dos lados juntas (geoplanos de madera, ligas de hule de distintos colores, pizarrón, rotafolios y plumones).

Hoja de trabajo 5 (10 min). El maestro plantea un problema análogo al de la *Hoja de trabajo 4*, pero ahora con un triángulo acutángulo: según se explica en la *Hoja de trabajo 5*, se trata de construir un cuadrado sobre cada uno de los lados del triángulo, determinar cuál de los tres es el cuadrado más grande, y comparar el área de éste con la de los otros dos cuadrados juntos. Los alumnos trabajan en equipo bajo supervisión del maestro para resolver el problema planteado, y después integrantes de uno de los equipos exponen ante el grupo los detalles de su trabajo realizado (fotocopias, hojas en blanco, plumines, geoplanos de madera, ligas de hule de distintos colores, pizarrón, rotafolios y plumones).

Discusión (3 min). Se discuten con el grupo de alumnos las respuestas dadas a las preguntas planteadas en el inciso 2 de la *Hoja de trabajo 5*, y se comparan estos resultados con los obtenidos en la actividad planteada en la *Hoja de trabajo 4*, desarrollada en la primera sesión (pizarrón, rotafolios y plumones).

Hoja de trabajo 6 (2 min). El maestro plantea la pregunta contenida en la *Hoja de trabajo 6*; se discute con los alumnos su comprensión de esta pregunta a partir de los resultados que obtuvieron al desarrollar las actividades de las hojas de trabajo 4 y 5 (fotocopias, pizarrón y rotafolios).

Triángulos rectángulos (1 min). El maestro da instrucciones para desarrollar actividades análogas a las de las hojas de trabajo 4 y 5, partiendo de que se espera que alguno(s) de los alumnos planteen que la respuesta a la pregunta
que aparece en la *Hoja de trabajo* ó se relaciona con un triángulo rectángulo; esto es, se debe hacer lo mismo que se indicó en las hojas de trabajo 4 y 5, pero ahora desde la construcción de un triángulo rectángulo en el geoplano (fotocopias, pizarrón y rotafolios).

Trabajo en equipo (10 min). Los alumnos trabajan en equipo bajo supervisión del maestro para probar la conjetura planteada como respuesta a la pregunta que aparece en la *Hoja de trabajo* ó (acerca de la igualdad del área del cuadrado construido sobre el lado más largo de un triángulo rectángulo con las áreas de los cuadrados construidos sobre sus otros dos lados); integrantes de uno de los equipos exponen ante el grupo los detalles de su trabajo realizado para verificar su respuesta dada a esa pregunta, y después se discute con el grupo de alumnos la verificación que hicieron de sus respuestas; finalmente, el maestro hace un breve resumen de la comparación de las áreas de los cuadrados construidos sobre los lados de un triángulo rectángulo (fotocopias, hojas en blanco, plumines, geoplanos de madera, ligas de hule de distintos colores, pizarrón, rotafolios y plumones).

Representación simbólica (5 min). El maestro pide a los alumnos que escriban una fórmula sobre el resultado al que llegaron acerca de las áreas de los cuadrados construidos sobre los lados de un triángulo rectángulo. Los alumnos trabajan en equipo bajo supervisión del maestro para plantear la fórmula pedida, y después integrantes de uno de los equipos exponen ante el grupo la fórmula que plantearon (hojas en blanco, plumines, pizarrón, rotafolios y plumones).

Resumen (2 min). El maestro hace un breve resumen sobre el resultado obtenido de la igualdad del área del cuadrado construido sobre el lado más largo de un triángulo rectángulo con las áreas de los cuadrados construidos sobre sus otros dos lados y de su representación simbólica mediante una fórmula, e indica que a continuación se verá una videograbación relacionada con los conocimientos aplicados por los alumnos para hacer nuevos descubrimientos al desarrollar cada una de las actividades durante las dos sesiones de trabajo (pizarrón, rotafolios y plumones).
Proyección de una videograbación (6 min). La videograbación es sobre el matemático Pitágoras y el teorema que lleva su nombre (cápsula en videograbación, reproductora de videograbaciones y televisión).

Discusión (2 min). Se discute con el grupo de alumnos acerca del contenido matemático de la videograbación, esto es, de los elementos que componen el teorema de Pitágoras.

Conclusión y despedida (1 min). El maestro felicita al grupo por sus logros durante las dos sesiones de trabajo; plantea que se trabajará durante las siguientes sesiones en problemas de aplicación del teorema de Pitágoras, y finalmente se despedida.

Descripción de las actividades

Primera sesión

Inicialmente, los alumnos vieron en la televisión una cápsula de videograbación sobre la determinación de áreas de terrenos, la cual duró 6 minutos. Enseguida, el maestro les explicó que desarrollarían diversas actividades auxiliándose de los geoplanos. Cada equipo de cuatro alumnos contó con dos geoplanos en su mesa de trabajo, así como con una bolsa de ligas de hule de distintos colores, hojas en blanco y plumines de distintos colores. Después de entregar a los alumnos fotocopias de la Hoja de trabajo 1, también se les dieron fotocopias con una representación gráfica del geoplano de madera.

El maestro explicó que debían considerar como unidad de medida de área un cuadrado cuyos vértices estuviesen determinados por cuatro clavos del geoplano como se muestra en la siguiente figura. Obtuvieron muy rápido los resultados de la actividad planteada en la Hoja de trabajo 1.
En la Hoja de trabajo 2 se presentaron dos triángulos de los cuales se debía determinar su área. El maestro supervisó el trabajo que realizaban los alumnos en cada equipo. Para determinar las áreas de los triángulos usaron la fórmula

\[\text{área} (\Delta) = \frac{b \times h}{2} \]

("base por altura entre dos"), siendo \(b\) la longitud de la base y \(h\) la longitud de la altura del triángulo cuya área se quiera calcular. Se dio cuenta el maestro de que en todos los equipos siguieron un procedimiento análogo, habiendo llegado a los mismos resultados esperados: un triángulo tenía 10 unidades de área y el otro, 20.

En la Hoja de trabajo 3 se mostró la representación de un pentágono rectilíneo irregular en un geoplano, del cual se tenía que determinar su área. El maestro pidió a los alumnos que construyeran el pentágono en el geoplano de madera con las ligas de hule. Los alumnos trabajaron en equipo bajo la supervisión del maestro, quien verificó en los primeros equipos a los que se acercó que hubiesen copiado el pentágono exactamente en la misma posición en que se mostró en las fotocopias. Determinaron que el pentágono tenía 25.5 unidades de área. No fue necesario discutir el procedimiento mostrado por quienes expusieron a sus compañeros del grupo cómo resolvieron el problema planteado en la Hoja de trabajo 3, pues todos los equipos habían hecho lo mismo, esto es, en ningún equipo surgió algún procedimiento distinto al que se expuso.
Después de entregar a los alumnos fotocopias de la *Hoja de trabajo 4*, el maestro les pidió, como lo había hecho en la actividad anterior, que construyeran en el geoplano de madera con las ligas la figura rectilínea en la misma posición en que se mostró en esta hoja de trabajo. Se trataba de un triángulo obtusángulo que en la cartulina sobre el pizarrón sus vértices se señalaron como A, B y C. Enseguida, el maestro explicó verbalmente que debían construir sobre cada lado del triángulo un cuadrado cuyo lado fuese el correspondiente del triángulo; determinar cuál de los tres cuadrados era el que tenía mayor área, y si con las áreas de los dos cuadrados más pequeños se completaba la del cuadrado más grande. Mientras los alumnos trabajaban en equipo, el maestro inicialmente verificó que hubiesen copiado el triángulo con las ligas en el geoplano de madera exactamente en la misma posición en que se mostró en las fotocopias.

No se discutió en el grupo el procedimiento mostrado por quienes expusieron la resolución del problema planteado en la *Hoja de trabajo 4*, pues todos los equipos habían hecho lo mismo (en ningún equipo surgió algún procedimiento distinto al que se expuso). Sí se verificó que en todos los equipos habían obtenido los mismos resultados: 26, 13 y 5.

El maestro preguntó finalmente a los alumnos a cuánto era igual la suma de las áreas de los dos cuadrados más pequeños (13 + 5 = 18) y si se completaba el área del cuadrado más grande (26). La respuesta fue negativa: determinaron que faltaban 8 unidades de área para completar la del cuadrado más grande (26 - 18 = 8). En este punto se concluyó con las actividades de la primera sesión de trabajo correspondiente al módulo 10.

Segunda sesión

Se inició la segunda sesión de trabajo con un breve resumen general que hizo el maestro acerca del tipo de actividades con las que se había trabajado durante la primera sesión, y se indicó que se continuarían desarrollando actividades análogas. Enseguida, los alumnos vieron una cápsula de videográfación con los
 contenidos de las hojas de trabajo 1 a 4, sin que se incluyera alguna solución de los problemas planteados en ellas, que duró 1.5 minutos.

El maestro, mediante preguntas a los alumnos, presentó un breve resumen para que recordaran que al haber comparado el área del cuadrado más grande que se construyó sobre uno de los lados del triángulo de la Hoja de trabajo 4 con las de los cuadrados construidos sobre los otros dos lados, las áreas de éstos no completaban la del cuadrado más grande.

Se entregaron entonces fotocopias de la Hoja de trabajo 5 a los alumnos, y se les pidió que notaran que las instrucciones eran las mismas que se habían dado en la primera sesión para la Hoja de trabajo 4: debían construir en el geoplano de madera con las ligas la figura rectilínea en la misma posición que se mostró en la Hoja de trabajo 5. Se trataba de un triángulo acutángulo que en la cartulina sobre el pizarrón sus vértices se señalaron como A, B y C. Luego, tenían que construir sobre cada lado del triángulo un cuadrado cuyo lado fuese el correspondiente del triángulo; determinar cuál de los tres cuadrados era el que tenía mayor área y si con las áreas de los dos cuadrados más pequeños se completaba la del cuadrado más grande. Mientras los alumnos trabajaban en equipo, el maestro verificó inicialmente que hubiesen copiado el triángulo con las ligas en el geoplano de madera exactamente en la misma posición que se mostró en las fotocopias.

En el equipo que primero determinó las áreas de los tres cuadrados construidos, el maestro les pidió que explicaran cómo habían obtenido sus resultados (17, 13 y 10 unidades de área respectivamente). Luego, el maestro se dedicó a revisar el trabajo de los demás equipos.

La exposición de uno de los alumnos ante el grupo sobre los procedimientos seguidos y los resultados obtenidos fue breve y no hubo algún detalle novedoso con respecto a lo que ya se había hecho en la primera sesión con la actividad de la Hoja de trabajo 4. Con base en los resultados obtenidos hasta este punto en las dos sesiones de trabajo, el maestro planteó la siguiente pregunta: “¿Habrá algún tipo de triángulo en el que los dos cuadrados más pequeños llenen exactamente el cuadrado más grande, es decir, que no sobre ni falte área?” (Véase la Hoja de trabajo 6.)
Un alumno respondió que sí, y que se trata de un triángulo rectángulo. La nueva actividad que el maestro indicó a los alumnos que desarrollaran consistía en construir un triángulo rectángulo con ligas en el geoplano de madera y repetir los mismos pasos que en las actividades de las hojas de trabajo 4 y 5: construir sobre cada lado del triángulo un cuadrado cuyo lado fuese el correspondiente del triángulo; determinar cuál de los tres cuadrados era el que tenía mayor área, y si con las áreas de los dos cuadrados más pequeños se completaba la del cuadrado más grande.

En dos equipos construyeron un triángulo rectángulo tal que las áreas de los cuadrados construidos sobre sus lados fueron 4, 16 y 20; en otro equipo construyeron un triángulo rectángulo isósceles tal que las áreas de los cuadrados construidos sobre sus lados fueron 9, 9 y 18; y en otro equipo el triángulo rectángulo que construyeron fue tal que las áreas de los cuadrados construidos sobre sus lados fueron 9, 16 y 25.

La explicación que una alumna dio de los cálculos hechos en su equipo fue breve. Así, finalmente, se concluyó bajo discusión que la conjetura de que en un triángulo rectángulo el cuadrado construido con el lado más grande del triángulo tiene área igual a la suma de las áreas de los cuadrados construidos con los otros dos lados es cierta.

Con el uso de una representación en una cartulina, se pidió a los alumnos que escribieran una fórmula para representar el resultado al que llegaron al comparar las áreas de los cuadrados construidos sobre los lados de un triángulo rectángulo.

Después de trabajar en equipo durante casi 2 minutos, uno de los alumnos escribió en el pizarrón la igualdad \(a^2 + b^2 = c^2\) y la explicó señalando el esquema en la cartulina sobre el pizarrón. Indicó que el lado del cuadrado más grande estaba representado con la letra \(c\) y los de los otros dos con \(a\) y \(b\), indistintamente.

El maestro hizo un resumen sobre el resultado obtenido de la igualdad del área del cuadrado construido sobre el lado más largo de un triángulo rectángulo con las áreas de los cuadrados construidos sobre sus otros dos lados y de su representación simbólica mediante la fórmula \(a^2 + b^2 = c^2\).
Ahora, el maestro pidió que alguien explicara por qué la fórmula “base por altura sobre dos” funciona para calcular el área de un triángulo. Una alumna lo explicó desde su lugar y después se puso de pie para mostrar en un geoplano lo que dijo. Los alumnos manifestaron estar convencidos del resultado.

El maestro explicó que se vería una videograbación que trata del resultado de la relación de las áreas de los cuadrados construidos sobre los lados de un triángulo rectángulo. Después de que terminó de verse la videograbación, el maestro planteó preguntas sobre el contenido de ésta, en la que se introdujeron los términos catetos, hipotenusa y teorema de Pitágoras. Finalmente, enunció que “en un triángulo rectángulo el cuadrado construido sobre la hipotenusa es igual a la suma de los cuadrados construidos sobre los catetos”.

Aquí concluyó la segunda sesión de trabajo, indicándose que en las siguientes sesiones se tratarían problemas de aplicación del teorema de Pitágoras.

Lo que hicieron los alumnos

En cuanto a la actividad de la *Hoja de trabajo 1*, un alumno explicó que el procedimiento seguido en su equipo fue contar el número de “cuadritos” de una unidad de área que componen el cuadrado (9 unidades de área) y el rectángulo (10 unidades de área) que se muestran en esta hoja de trabajo, habiéndolos construido correctamente con ligas fijadas en los clavos del geoplano de madera. Este alumno no necesitó hacer uso de la cartulina pegada en el pizarrón.

En la actividad de la *Hoja de trabajo 3*, en todos los equipos coincidieron en tomar un cuadrado de $4 \times 4 = 16$ unidades cuadradas en el interior del pentágono y determinaron que éste se completaba con 4 triángulos, de los cuales calcularon su área como el semiproducto de la base por la altura de cada uno de ellos. Dos alumnos presentaron ante el grupo el procedimiento que siguieron para calcular el área del pentágono; tres de los cuatro triángulos con los que completaron el cuadrado eran rectángulos y uno era obtusángulo.
En la actividad de la *Hoja de trabajo 4*, determinaron que el cuadrado más grande tenía 16 unidades de área más las de cuatro triángulos que lo completaban, de 2.5 unidades de área cada uno; esto es, el cuadrado más grande tenía 26 unidades de área. Una alumna explicó al grupo cómo determinaron en su equipo que uno de los cuadrados construidos tenía 26 unidades de área. Otro alumno del mismo equipo explicó al grupo cómo calcularon las áreas de los otros dos cuadrados (el procedimiento fue el mismo): los otros dos cuadrados tenían 5 y 13 unidades de área respectivamente; para el primero de éstos, construyeron en su interior un cuadrado de una unidad de área y lo completaron con cuatro triángulos de una unidad de área cada uno, y para el segundo también construyeron en su interior un cuadrado de una unidad de área y lo completaron con cuatro triángulos de tres unidades de área cada uno.

Respuestas esperadas

Como se esperaba, no fue necesario discutir los procedimientos seguidos y los resultados obtenidos en las actividades de las hojas de trabajo, pues en todos los equipos habían coincidido. Las exposiciones de los alumnos ante su grupo de compañeros fueron breves.

En la actividad de la *Hoja de trabajo 5*, el maestro preguntó a los alumnos a cuánto era igual la suma de las áreas de los dos cuadrados más pequeños, $13 + 10 = 23$, y si se completaba el área (17) del cuadrado más grande. La respuesta fue afirmativa y determinaron que sobraban 6 unidades de área en los dos cuadrados más pequeños, $23 - 17 = 6$. Recordaron que en el caso de la actividad de la *Hoja de trabajo 4*, en la que se trabajó con un triángulo obtusángulo, había faltado área para completar con los dos cuadrados más pequeños el grande.

Respuestas no esperadas

El maestro no esperaba que los alumnos utilizaran la fórmula
Área (Δ) = $\frac{b \times h}{2}$

para calcular áreas de triángulos; hasta la parte final de la segunda sesión de trabajo, se pidió a los alumnos que explicaran por qué esta fórmula funciona.

El maestro preguntó a los expositores cómo habían determinado el área del triángulo obtusángulo que habían marcado en el pentágono de la Hoja de trabajo 3. Es interesante hacer notar que tomaron como base del triángulo el lado opuesto a su ángulo obtuso, que tenía 5 unidades de longitud, y al indicar uno de los alumnos la altura, que era de una unidad de longitud, la tomó perpendicular a partir de un extremo de la base, y no desde el vértice opuesto a ésta, lo cual indica una buena comprensión del concepto de altura en un triángulo.

Los triángulos que utilizaron en la descomposición de los cuadrados construidos en la actividad de la Hoja de trabajo 4 fueron rectángulos, de manera que pudieron calcular fácilmente sus áreas mediante la fórmula “base por altura entre dos”, pues tomaron un cateto como base y el otro como altura, aunque no se señaló esta situación ni se usaron esos términos.

En la segunda sesión de trabajo, el maestro había pedido a dos miembros de uno de los equipos que expusieran al grupo los detalles de su trabajo para resolver el problema planteado en la Hoja de trabajo 4 (se había dejado este geoplano con las ligas como las habían colocado los alumnos de este equipo en la primera sesión, así que en la segunda sesión se pudo utilizar para recordar el procedimiento que se había seguido para resolver ese problema). El detalle interesante del trabajo de este equipo, fue que habían construido dos de los cuadrados, los de 26 y 13 unidades de área, encima del triángulo y no hacia su parte exterior; incluso, el cuadrado de 5 unidades de área quedó intersecándose con el cuadrado de 26 unidades de área (como se puede observar en las imágenes de la videograbación de esta sesión de trabajo).

En la Hoja de trabajo 5, para calcular el área del cuadrado mediano (el de 13 unidades), en un equipo lo habían dividido en un cuadrado de una unidad de área en su parte central, cuatro triángulos rectángulos con base 1 sobre cada uno de los lados del cuadrado interior y altura 2 con vértice en cada uno de los del cuadrado del que se tenía que calcular su área,
y otros cuatro triángulos de los que el maestro les ayudó a calcular su área: la base de cada uno de estos segundos cuatro triángulos era la altura de los primeros cuatro y su altura media 2, pero ésta quedaba fuera del triángulo, esta altura iba de un vértice del cuadrado original a un vértice del cuadrado de una unidad de área en su interior. El maestro hizo notar a los alumnos de este equipo que a veces la altura de un triángulo puede quedar en su exterior (aunque no explicó que esto sucede en los triángulos obtusángulos). Así, se determinó que el área de este cuadrado era

$$1 + 4 \frac{1 \times 2}{2} + 4 \frac{2 \times 2}{2} = 1 + 4 + 8 = 13.$$

Sobre la pregunta planteada verbalmente por el maestro e incluida en la Hoja de trabajo 6, el mismo alumno que respondió que se trataba de un triángulo rectángulo describió que este tipo de triángulos se forman a partir de un rectángulo partido a la mitad por una de sus diagonales. Es decir, dos lados consecutivos de un rectángulo y la diagonal que une sus extremos no comunes forman un triángulo rectángulo.

Dificultades

En un equipo construyeron en el geoplano de madera un triángulo distinto a los mostrados en la Hoja de trabajo 2, pero calcularon bien el área de ese triángulo. En otro equipo una alumna trató de calcular el área de uno de los triángulos contando el número de cuadritos (en lugar de usar la fórmula “base por altura sobre dos”), y luego intentó juntar las partes de cuadritos, pero no hizo esto último de manera correcta; sin embargo, sus compañeros de equipo explicaron sus cálculos mediante la fórmula de “base por altura sobre dos”.

En la actividad de la Hoja de trabajo 3, dos alumnos de uno de los equipos habían obtenido como resultado 22.5 unidades de área para el pentágono, en lugar de 25.5. En realidad, habían construido un pentágono un poco más pequeño que el que se pedía, pero hicieron los cálculos correctamente.

En la actividad de la Hoja de trabajo 4, el maestro auxilió a los alumnos de un equipo explicándoles el procedimiento seguido por integrantes de otros equipos,
el cual consistía en marcar primero un cuadrado más pequeño y completar con triángulos el inicialmente construido.

En la segunda sesión de trabajo, cuando integrantes de uno de los equipos expusieron los detalles de su trabajo para resolver el problema planteado en la Hoja de trabajo 4, se pidió a una alumna de este equipo que explicara cómo había calculado el área del cuadrado más chico, el cual había dividido en un cuadrado interior de una unidad de área y cuatro triángulos rectángulos iguales, las longitudes de cuyos catetos eran 1 y 2. Se equivocó esta alumna al medir la longitud del cateto de 2 unidades (dijo que medía 3, pues contó el número de pivotes de uno a otro extremo de este lado del triángulo), pero corrigió ella misma cuando el maestro le pidió que verificara la respuesta que había dado.

Reglas que no quedaron claras para el desarrollo de las actividades

A partir de la Hoja de trabajo 2, el maestro en ningún momento preguntó a los alumnos o les indicó con qué tipo de triángulos estaban trabajando: cuando se hace referencia a alguno de los triángulos, sólo se señala.

Lo que señalaron los alumnos

Para la determinación de las áreas de los triángulos mostrados en la Hoja de trabajo 2, los alumnos tomaron como unidad de longitud la separación entre dos clavos consecutivos en una misma fila o en una misma columna (lo cual quedó implícito en la convención de lo que se tomó como una unidad de área, pero que no se hizo explícito en las explicaciones del maestro, quien aceptó esta concepción de los alumnos sin discutir o comentar algo al respecto durante el desarrollo de las dos sesiones de trabajo).

En la actividad de la Hoja de trabajo 4, en ninguno de los equipos intentaron calcular el área de los cuadrados construidos sobre cada lado del triángulo determinando primero la longitud del lado y elevando ésta al cuadrado. En algunos
equipos lo que hicieron fue primero marcar un cuadrado más pequeño dentro de uno de los cuadrados construidos, de modo que sus lados fuesen paralelos a los lados del geoplano; determinaron el área de este cuadrado más pequeño, y completaron con triángulos el inicialmente construido.

En la actividad de la *Hoja de trabajo 5*, para calcular el área del cuadrado más grande de los tres que construyeron, marcaron en su interior un cuadrado de lados paralelos a los del geoplano con 9 unidades de área y lo completaron con cuatro triángulos rectángulos las longitudes de cuyos catetos eran 1 y 4. En uno de los equipos, una alumna explicó que había multiplicado base por altura, 1×4, y dividido entre 2, $\frac{4}{2} = 2$. Pero el alumno que estaba enfrente de ella, inicialmente, no estuvo de acuerdo y explicó que la base media 4 y la altura 1 y expresó: “4 por 1, 4; entre 2, a 2”; pero, entonces, se dio cuenta de que el resultado era el mismo.

Después de que se planteó una conjetura como respuesta a la pregunta incluida en la *Hoja de trabajo 6*, de que se trataba de un triángulo rectángulo, el maestro preguntó los nombres de los ángulos que son mayores de 90° o menores de 90°. Los alumnos contestaron que a un ángulo mayor de 90° se le llama obtuso y a uno menor de 90°, agudo. Visualmente, reconocieron que el triángulo en la *Hoja de trabajo 5*, mostrado también en una cartulina sobre el pizarrón, no tenía ningún ángulo obtuso. Asimismo, describieron que el ángulo del triángulo en la *Hoja de trabajo 4*, cuyo vértice se denotó con A en una cartulina sobre el pizarrón, es obtuso, y que sus otros dos ángulos son agudos. Se discutió que el cuadrado que se había construido sobre el lado opuesto al ángulo obtuso había sido el más grande.

Planeación de la sesión con los maestros

Inicio (3 min). El coordinador de las actividades del taller saluda al grupo de maestros participantes y explica detalladamente las actividades de cálculo de áreas de cuadrados en un geoplano que se llevarán a cabo durante la sesión.
Triángulos obtusángulos (5 min). El coordinador explica que la primera actividad del taller consiste en construir en un geoplano un triángulo obtusángulo y luego construir sobre cada uno de los lados del triángulo un cuadrado; después se tiene que determinar cuál de los tres es el cuadrado más grande, y comparar el área de éste con la de los otros dos cuadrados juntos. Antes de empezar a realizar la actividad planteada, se discute con los maestros a qué resultado se va a llegar, es decir, se les pide que planteen conjeturas sobre lo que se va a obtener en cuanto a la comparación de las áreas de los cuadrados que se tienen que construir.

Trabajo en equipo (10 min). Los maestros trabajan por parejas bajo supervisión del coordinador para resolver el problema planteado del triángulo obtusángulo (fotocopias de representación de geoplanos, hojas en blanco, plumines, geoplanos de madera y ligas de hule de distintos colores).

Exposición (4 min). Algunos de los maestros presentan ante los demás participantes en el taller sus resultados acerca del problema planteado sobre un triángulo obtusángulo (geoplanos de madera y ligas de hule de distintos colores).

Discusión (4 min). Se discute con los maestros la forma en que verificaron sus conjeturas acerca de la comparación de áreas de los cuadrados construidos sobre los lados de un triángulo obtusángulo (geoplanos de madera y ligas de hule de distintos colores).

Triángulos acutángulos (3 min). El coordinador explica que la siguiente actividad del taller consiste en construir en un geoplano un triángulo acutángulo y luego un cuadrado sobre cada uno de los lados del triángulo; después se tiene que determinar cuál de los tres es el cuadrado más grande y comparar el área de éste con la de los otros dos cuadrados juntos. Antes de empezar a realizar la actividad planteada, se discute con los maestros a qué resultado se va a llegar, es decir, se les pide que planteen conjeturas sobre lo que se va a obtener en cuanto a la comparación de las áreas de los cuadrados que se tienen que construir.

Trabajo en equipo (10 min). Los maestros trabajan por parejas bajo supervisión del coordinador para resolver el problema planteado del triángulo acután-
gulo (fotocopias de representación de geoplanos, hojas en blanco, plumines, geoplanos de madera y ligas de hule de distintos colores).

Exposición (3 min). Algunos de los maestros presentan ante los demás participantes en el taller sus resultados acerca del problema planteado sobre un triángulo acutángulo (geoplanos de madera y ligas de hule de distintos colores).

Discusión (3 min). Se discute con los maestros la forma en que verificaron sus conjeturas acerca de la comparación de áreas de los cuadrados construidos sobre los lados de un triángulo acutángulo (geoplanos de madera y ligas de hule de distintos colores).

Triángulos rectángulos (2 min). A partir de la comparación de los resultados obtenidos con triángulos obtusángulos y acutángulos, el coordinador plantea la pregunta de si habrá algún triángulo en el que el área de los cuadrados construidos sobre los dos lados más pequeños sea igual al área del cuadrado construido sobre su lado más grande, y se pide a los maestros que argumenten sus respuestas.

Discusión (2 min). Se discute con el grupo de maestros la naturaleza de los resultados obtenidos durante el taller y se reafirma su conocimiento del teorema de Pitágoras.

Conclusión y despedida (1 min). El coordinador del taller agradece a los maestros su participación y se despide.

Descripción de las actividades

Inicialmente, el coordinador de las actividades del taller explicó a los maestros participantes que se desarrollarían diversas actividades, auxiliándose de geoplanos, mediante las cuales descubrirían algunas cuestiones relacionadas con la geometría y la medición. Los maestros desarrollarían las actividades planeadas trabajando en parejas; para ello, cada pareja de participantes contó con un geoplano en su mesa de trabajo, así como con una bolsa de ligas de hule de distintos colores, hojas en blanco, plumines de distintos colores y fotocopias con una representa-
ción gráfica del geoplano de madera (ésta se incluye como anexo en el apéndice de este módulo).

El coordinador de la sesión indicó que la primera actividad consistiría en construir con las ligas un triángulo obtusángulo en el geoplano de madera y luego, sobre cada lado del triángulo, un cuadrado cuyo lado fuese el correspondiente del triángulo. Después, si identificaban que uno de los tres lados del triángulo era más largo que los otros dos, debían determinar qué relación se daba entre el área del cuadrado más grande y las de los dos cuadrados más pequeños.

Antes de empezar a desarrollar esta actividad, se discutió la posibilidad de plantear una conjetura sobre la relación buscada. Un maestro expresó que pensaba que se cumplía la generalización del teorema de Pitágoras. Entonces, el coordinador preguntó en qué sentido lo decía y lo que contestó el maestro fue que las áreas que se iban a generar cumplirían la relación del teorema de Pitágoras. Así que la pregunta del coordinador fue relevante, ya que se puede pensar en distintas generalizaciones del teorema de Pitágoras: por ejemplo, se podría pensar en “la ley de cosenos” como una generalización del teorema de Pitágoras (véase la sección “Una generalización del teorema de Pitágoras” en la ampliación del tema de este módulo).

Al trabajar en parejas para resolver el problema del triángulo obtusángulo, los maestros hicieron uso del geoplano de madera, así como de la representación gráfica de éste en las fotocopias.

Una pareja de maestros informó que había trabajado con dos ejemplos de triángulos obtusángulos y que se habían dado cuenta de que la suma de las áreas de los dos cuadrados pequeños era menor que la del cuadrado más grande, aunque indicaron que no habían logrado calcular las áreas con precisión. Esta misma pareja de maestros después explicó lo que había hecho con uno de sus ejemplos. Habían construido un triángulo obtusángulo tal que los cuadrados construidos sobre sus lados tenían 8, 9 y 29 unidades de área respectivamente —aunque en realidad sólo pudieron determinar con exactitud el área del segundo cuadrado—. Tomaron como unidad de longitud la distancia entre dos clavos consecutivos en una misma fila en el geoplano de madera y así determinaron
inmediatamente que uno de los cuadrados tenía su lado de longitud 3. Explica-
caron que con un bolígrafo habían marcado la longitud del lado del cuadrado
de 9 unidades de área y la habían llevado a otro cuadrado, observando que
la longitud del lado de este cuadrado era menor que 3 (propusieron que era
aproximadamente de 2.7 unidades de longitud). Luego, también usando un
bolígrafo, habían tomado 4½ unidades de longitud aproximadamente y la lle-
varon al tercer cuadrado observando que la longitud del lado de este cuadrado
era mayor que 4.5 (señalaron que lo habían considerado de 5 unidades de
longitud). Así, las áreas que determinaron para estos tres cuadrados fueron
7.29, 9 y 25 (en lugar de 8, 9 y 29).

Una pareja más de maestros mostró que había construido un triángulo obtu-
sángulo tal que los cuadrados construidos sobre sus lados tenían 4, 8 y 20 uni-
dades de área, respectivamente (aunque todavía no habían determinado estas
cantidades). Un maestro de este equipo mostró con su geoplano la conveniencia
de considerar como unidad de medida de área un cuadrado cuyos vértices es-
tuviesen determinados por cuatro clavos del geoplano, como se muestra en la
siguiente figura (en lo que sigue se le denominará cuadrado unitario).

Así, para determinar el área del segundo cuadrado, el mismo maestro lo descom-
puso en un cuadrado interior con lados paralelos a los lados del geoplano y cuatro
triángulos en sus esquinas de una unidad de área cada uno; esto es, este segundo
cuadrado originalmente construido tenía 8 unidades de área. El coordinador
preguntó cómo habían determinado el área de cada uno de los triángulos, y el
maestro explicó que la base de cada triángulo era de 2 unidades de longitud y tenía una altura de 1 unidad de longitud; luego, “base por altura entre 2”, daba 1 unidad de área. Este maestro mostró otra manera de calcular el área de cada uno de estos triángulos completando cuadrados unitarios, es decir, hizo notar que el triángulo de 1 unidad de área estaba formado por dos mitades de cuadrados unitarios. También mostró que el cuadrado originalmente construido se podía descomponer en cuatro triángulos rectángulos cuyos catetos eran de 2 unidades de longitud y sus hipotenusas eran precisamente los lados del cuadrado. Por lo que la longitud del lado del cuadrado resultó ser, mediante el teorema de Pitágoras,

$$\sqrt{2^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2},$$

según lo explicó verbalmente el maestro. Expresó que análogamente habían calculado el área del cuadrado más grande y que habían llegado a la conclusión de que la suma de las áreas de los dos cuadrados pequeños era menor que el área del cuadrado más grande. El coordinador preguntó cuáles habían sido los valores calculados de las áreas y, entonces, el maestro explicó que el cuadrado más grande lo habían descompuesto en 12 cuadrados unitarios y en 8 triángulos de 1 unidad de área cada uno; además, había indicado que era evidente que un cuadrado estaba formado por 4 cuadrados unitarios y no había necesidad de hacer cálculos o de descomponer este cuadrado en partes. Luego explicó que se tenía una diferencia de

$$20 - (4 + 8) = 20 - 12 = 8$$ unidades de área.

El coordinador indicó que la siguiente actividad consistiría en trabajar con un triángulo acutángulo, haciendo lo mismo que en la actividad previa. Pidió que trataran de realizar esta nueva actividad con mayor rapidez. No se discutió en este caso la posibilidad de plantear una conjetura sobre la relación buscada.

Mientras trabajaban en parejas para resolver el problema del triángulo acutángulo, el coordinador supervisó el trabajo de cada pareja. Una pareja de maestras
trabajó con un triángulo acutángulo isósceles en el que el lado desigual era menor que los dos lados iguales. Habiendo tomado como unidad de longitud la distancia entre dos clavos consecutivos en una misma fila en el geoplano de madera, determinaron inmediatamente que el lado desigual del triángulo isósceles que habían construido tenía una longitud de 2 unidades, por lo que el cuadrado construido sobre él tenía 4 unidades de área. Explicaron que usando una hoja de papel habían marcado en una orilla de ésta 3 unidades de longitud y la habían llevado a uno de los dos lados iguales del triángulo isósceles, observando que ésta era mayor que 3 (propusieron que era aproximadamente de 3.2 unidades de longitud). Así, las áreas que determinaron de esta manera para los tres cuadrados fueron 4, 10.24 y 10.24 (en lugar de 4, 10 y 10). El coordinador les sugirió que descompusieran en cuadrados unitarios y en triángulos los cuadrados construidos sobre los lados del triángulo para determinar con precisión las áreas de éstos.

Otra pareja de maestros también había utilizado un triángulo isósceles cuyo lado desigual tenía una longitud de 2 unidades. Explicaron que habían calculado la longitud de cada uno de los lados iguales mediante el teorema de Pitágoras y que media $\sqrt{5}$. Así, las áreas de los tres cuadrados fueron 4, 5 y 5. A esta pareja el coordinador también le sugirió que utilizara el método de descomposición de los cuadrados construidos sobre los lados del triángulo en cuadrados unitarios y en triángulos para determinar con precisión las áreas requeridas.

Las maestras que habían construido el triángulo isósceles para el que las áreas de los cuadrados construidos sobre sus lados eran 4, 10 y 10, finalmente pudieron determinar con precisión las 10 unidades de área, siguiendo una sugerencia del coordinador del taller: descompusieron el cuadrado construido sobre uno de los lados iguales en un cuadrado interior de 4 unidades de área, con lados paralelos a los lados del geoplano, y en cuatro triángulos rectángulos cuyos catetos tenía 1 y 3 unidades de longitud, respectivamente (esto es, cada uno de estos triángulos tenía $1\frac{1}{2}$ unidades de área).

El coordinador discutió con los maestros los resultados a que habían llegado trabajando con un triángulo acutángulo, haciendo notar que varias de las parejas de maestros habían construido un triángulo isósceles. Mostró el trabajo de una de
las parejas en el geoplano: estos maestros habían trabajado con un triángulo para el que las áreas de los cuadrados construidos sobre sus lados eran 9, 17 y 20; esto es, esta pareja de maestros no usó un triángulo isósceles.

Sobre la comparación de áreas, se mostró que en un triángulo acutángulo la suma de las áreas de dos cualesquiera de los cuadrados construidos sobre los lados del triángulo era mayor que la del tercero. Este resultado fue evidente gracias a haber desarrollado esta actividad con un triángulo isósceles que a la vez era acutángulo.

Dos parejas de maestros habían trabajado con un triángulo isósceles en el que las áreas de los cuadrados construidos sobre sus lados eran 4, 17 y 17. Un maestro expuso ante los demás cómo había determinado que uno de los cuadros tenía 17 unidades de área.

El coordinador pidió a los maestros que indicaran qué había pasado con la comparación de áreas de los cuadrados construidos sobre los lados de un triángulo obtusángulo y de uno acutángulo: se concluyó que en el primer caso la suma de las áreas de los cuadrados más pequeños es menor que el área del mayor, y en el segundo caso que la suma de las áreas de dos de los cuadrados es mayor que la del tercero. Enseguida, el coordinador preguntó en qué caso se daría la igualdad. Dado que ya se había agotado el tiempo asignado al desarrollo del taller, después de que los maestros respondieron que la igualdad se da en un triángulo rectángulo, el coordinador explicó brevemente que se podría verificar la relación expresada en el teorema de Pitágoras mediante los procedimientos utilizados en las actividades de este taller (aunque algunos maestros habían usado precisamente el teorema de Pitágoras para calcular la longitud de lados de algunos de los cuadrados construidos). Aquí concluyó el desarrollo del taller, y el coordinador agradeció a los maestros su participación.

LO QUE HICIERON LOS MAESTROS

Uno de los cuatro maestros que habían trabajado con un triángulo isósceles en el que las áreas de los cuadrados construidos sobre sus lados eran 4, 17 y 17, mostró cómo había determinado que uno de los cuadrados tenía 17 unidades de área: había construido otro cuadrado de lados paralelos a los del geoplano de modo que los vér-
tices del primer cuadrado quedaron sobre los lados de éste. El nuevo cuadrado tenía 25 unidades de área (su lado evidentemente tenía 5 unidades de longitud) y estaba formado por el cuadrado que primero se había construido sobre uno de los lados del triángulo isósceles, junto con cuatro triángulos rectángulos cuyos catetos tenían 1 y 4 unidades de longitud, esto es, cada triángulo tenía 2 unidades de área. Así,

\[25 - (4 \times \frac{1 \times 4}{2}) = 25 - 4(2) = 25 - 8 = 17. \]

Respuestas esperadas

Se esperaba que se llegara a la conclusión de que la suma de las áreas de los cuadrados más pequeños construidos sobre los lados de un triángulo obtusángulo es menor que el área del cuadrado construido sobre el lado que subtiende al ángulo obtuso, y que en el caso de un triángulo acutángulo la suma de las áreas de dos de los cuadrados construidos sobre los lados del triángulo es mayor que la del cuadrado construido sobre el tercer lado.

Se esperaba que indicaran que la igualdad de áreas de dos cuadrados construidos sobre los lados de un triángulo, ocurre en un triángulo rectángulo, y que mencionaran el resultado geométrico conocido como teorema de Pitágoras.

Respuestas no esperadas

No se esperaba que se pensara que en un triángulo obtusángulo la suma de las áreas de los dos cuadrados más pequeños construidos sobre sus lados es igual al área del cuadrado construido sobre el lado más largo del triángulo. Esto es, que se dijera que se cumple la generalización del teorema de Pitágoras en el sentido de que las áreas que se iban a generar cumplirían la relación del teorema de Pitágoras aunque el triángulo fuese obtusángulo.

No se esperaba que para trabajar con un triángulo acutángulo lo construyeran isósceles, como lo hicieron varios maestros.
No se esperaba que recurrieran a la medición de longitudes para determinar áreas en el geoplano usando herramientas como una hoja de papel o un bolígrafo. Tampoco se esperaba que recurrieran al teorema de Pitágoras.

Dificultades

Algunos maestros tuvieron dificultades para representar con las ligas los cuadrados sobre los lados del triángulo obtusángulo que habían construido.

Aunque llegaban a una conclusión correcta sobre la relación entre las áreas de los cuadrados construidos sobre los lados de un triángulo obtusángulo, algunos maestros tuvieron dificultades para calcular con exactitud las áreas.

Algunos maestros no pudieron verificar “la equivalencia de áreas” que se había conjeturado para los cuadrados construidos sobre los lados de un triángulo obtusángulo.

Una pareja de maestras que trabajó con un triángulo acutángulo isósceles en el que el lado desigual era menor que los dos lados iguales, tuvo dificultades para determinar qué hacer ya que no había *un* lado mayor que los otros dos: estas maestras expresaron que no había “dos lados menores” porque se trataba de un triángulo isósceles. Entonces, el coordinador les sugirió que compararan uno de los tres lados con los otros dos como ellas quisieran escogerlos.

Reglas que no quedaron claras para el desarrollo de las actividades

Hubiese sido conveniente que a este grupo de maestros participantes en el taller se les entrenara en la determinación de áreas en un geoplano a partir de la descomposición de polígonos rectilíneos en triángulos y cuadrados unitarios, de modo que no tuvieran que determinar longitudes.

Lo que señalaron los maestros

El coordinador de la sesión replanteó la conjetura inicial de un maestroacerca de las relaciones entre las áreas de los cuadrados construidos sobre los lados de
un triángulo obtusángulo en términos de que la suma de las áreas de los dos cuadrados más pequeños sería igual al área del cuadrado más grande. En realidad otros maestros plantearon por su parte las otras dos posibilidades como conjeturas: que la suma de las áreas de los dos cuadrados más pequeños sería menor que el área del cuadrado más grande, y la otra, que sería mayor. Una maestra explicó que su conclusión había sido que la suma de las áreas de los cuadrados más pequeños era menor que el área del cuadrado más grande y agregó que esto se cumplía sólo para triángulos obtusángulos; enseguida otra maestra expresó lo mismo, aunque aclaró que todavía no había calculado con exactitud las áreas de los cuadrados construidos.

RECOMENDACIONES PARA LA ENSEÑANZA

Fue muy importante establecer desde un principio cuál sería la unidad de medición de área. Cabe hacer notar que a partir de la definición de un “cuadrado de área unitaria”, en los alumnos no surgió la necesidad de calcular el área de determinado cuadrado a partir de la longitud de su lado; por lo que, por ejemplo, si algún cuadrado tenía 17 unidades de área, los alumnos no tuvieron necesidad de trabajar con números irracionales tales como $\sqrt{17}$. Por otra parte, el grupo de alumnos que participó en las dos sesiones de este módulo, Áreas y Teorema de Pitágoras, de la sección de geometría, sí usó consistentemente la fórmula \[\text{área}(\triangle ABC) = \frac{b \times h}{2} \] para calcular el área de un triángulo; aunque debe observarse que siempre escogieron triángulos rectángulos en los que tomaban como b y h las longitudes de los catetos, que resultaban estar dadas en números enteros.

Debe ponerse atención al supervisar el trabajo de los alumnos en que, cuando se les pida que construyan determinada figura rectilínea en un geoplano usando ligas de hule con base en una fotocopia, algunos de ellos pueden tener dificultades de visualización para copiar esa figura en la posición indicada. Por otra parte, cuando se pida a los alumnos construir un cuadrado sobre un lado de un
triángulo, debe aclararse con precisión que el lado de ese cuadrado debe ser el lado correspondiente del triángulo con el que se esté trabajando.

 Nótese que en el trabajo que desarrollaron los alumnos con la construcción de cuadrados sobre los lados de dos triángulos, uno obtusángulo y otro acutángulo, no se mencionó con qué tipo de triángulos se estaba trabajando, pues no fue indispensable aclararlo a este grupo de alumnos. Así, cuando llega el momento en que los alumnos planteen conjeturas sobre triángulos rectángulos, de acuerdo con las actividades planeadas, conviene revisar con ellos la clasificación y nomenclatura de triángulos según sus ángulos, partiendo del lenguaje que los alumnos manejen en el momento de esta discusión breve sobre ángulos internos de triángulos.

 Puede ocurrir que en algún grupo de alumnos ninguno de ellos recurra directamente a la fórmula “base por altura entre 2” para calcular áreas de triángulos, sino que completen rectángulos, cuenten los cuadrados unitarios que los componen, y finalmente obtengan la mitad de ese resultado: fue de esta manera como el grupo de alumnos que participó en las dos sesiones de trabajo validó su utilización de la fórmula \(\text{área}(\Delta ABC) = \frac{b \times h}{2} \) para calcular el área de un triángulo.

 Fue muy positivo haber permitido que los distintos equipos de alumnos construyeran el triángulo rectángulo que ellos decidan, pues así fue posible verificante la igualdad pitagónica de áreas de cuadrados construidos sobre los lados de un triángulo rectángulo para diferentes casos. En una sesión de trabajo posterior debe retomarse este resultado y pedir a los alumnos que lo enuncien, incluso por escrito, con el lenguaje técnico convencional que se usó en la cápsula videograbada sobre Pitágoras.

 Con frecuencia ocurre que se expone una demostración de determinado teorema y, luego, en la resolución de algunos problemas se usa su recíproco, sin haber demostrado o al menos enunciado éste. Uno de esos casos lo constituyen algunas de las aplicaciones del teorema de Pitágoras y de su recíproco, cuando se usa éste y se menciona aquél. Debe ponerse atención a esta situación para fortalecer el desarrollo del pensamiento matemático de los alumnos.
AMPLIACIÓN DEL TEMA

Equivalencia de áreas

Proclo, quien vivió en el siglo V de nuestra era, escribió: "[...] muchos autores informan que los egipcios fueron los inventores de la geometría, que nació de la medida de los campos, necesaria a causa de las crecidas del Nilo que borraban el límite entre las propiedades". Se especula que por esta necesidad práctica en el antiguo Egipto, tal vez desde el año 2000 antes de nuestra era, los agrimensores recurrieran al artificio que se describe a continuación para construir un ángulo recto. Usaban una cuerda con 13 nudos igualmente espaciados (véase la figura 1) que la dividían en 12 partes iguales. Una persona sostenía la cuerda por los dos extremos juntos de ésta (en el primer y décimo tercer nudos) y otras dos personas sostenían la cuerda en el cuarto y octavo nudos tensándola, formando así un ángulo recto con vértice en el cuarto nudo (véase la figura 2).

Figura 1. Representación gráfica de una cuerda con 13 nudos igualmente espaciados

Figura 2. Construcción de un ángulo recto mediante una cuerda de 13 nudos igualmente espaciados
Según este relato, el artificio descrito de los agrimensores egipcios ejemplifica el resultado general de que

si el cuadrado construido sobre uno de los lados de un triángulo ABC es igual a la suma de los cuadrados construidos sobre sus otros dos lados entonces ABC es un triángulo rectángulo.

A este resultado se le denomina el recíproco del teorema de Pitágoras.
En el caso descrito, se tiene que

\[3^2 + 4^2 = 9 + 16 = 25 = 5^2\]

(véanse las figuras 1 y 2).
El teorema [directo] de Pitágoras asevera que

si ABC es un triángulo rectángulo entonces el cuadrado construido sobre la hipotenusa es igual a la suma de los cuadrados construidos sobre sus catetos.

Si con \(p\) se denota a la proposición

"ABC es un triángulo rectángulo"

y con \(q\) a la proposición

"el cuadrado construido sobre uno de los lados del triángulo ABC es igual a la suma de los cuadrados construidos sobre sus otros dos lados",

vemos que el teorema de Pitágoras tiene la forma

\[p \Rightarrow q;\]

al intercambiar los papeles que desempeñan \(p\) y \(q\) se obtiene la implicación de la forma
que corresponde al recíproco del teorema de Pitágoras, que también es verdadero.

La forma de representar simbólicamente un teorema en el que interviene una condición necesaria y suficiente es

\[p \iff q \]

y se lee “\(p \) si y sólo si \(q \)”. Por lo que en el caso que se está tratando, para que un triángulo \(ABC \) sea rectángulo es necesario y suficiente que el cuadrado construido sobre uno de sus lados sea igual a la suma de los cuadrados construidos sobre sus otros dos lados, lo cual también se enuncia de la siguiente manera:

el cuadrado construido sobre uno de los lados de un triángulo \(ABC \) es igual a la suma de los cuadrados construidos sobre sus otros dos lados si y sólo si \(ABC \) es un triángulo rectángulo

o

\(ABC \) es un triángulo rectángulo si y sólo si el cuadrado construido sobre uno de sus lados es igual a la suma de los cuadrados construidos sobre sus otros dos lados.

Sobre Pitágoras, la figura histórica más célebre de todos los matemáticos que han existido hasta nuestros días, Proclo comentó: “[…] transformó el estudio de la geometría en una enseñanza liberal, remontándose a los principios generales y estudiando los teoremas abstractamente y con la inteligencia pura”. Pitágoras nació en la isla de Samos, la cual está situada en el mar Egeo a menos de 2 km de la costa de Asia menor, probablemente en el año 569 a. n. e. Se desconoce cuál fue la demostración que el mismo Pitágoras dio del resultado que lleva su nombre, pero sí se le adjudica el haber sido quien llegó a la certeza de este conocimiento mediante razonamiento y no basándose sólo en la experiencia sensorial.

En el libro I de Los elementos de Euclides (ca. 300 a. n. e.) la proposición 47 es precisamente la que conocemos como el teorema de Pitágoras; la proposi-
ción 48 (con la que termina el libro I de los *Elementos de Euclides*) es la que se ha denominado el *converso del teorema de Pitágoras*. Estas dos proposiciones aparecen en el libro I de esta obra de Euclides enunciadas así:

Proposición 47

En los triángulos rectángulos el cuadrado del lado que subtende al ángulo recto es igual a los cuadrados de los lados que comprenden el ángulo recto.

Proposición 48

Si en un triángulo el cuadrado de uno de los lados es igual a los cuadrados de los dos lados restantes del triángulo, el ángulo comprendido por esos lados restantes del triángulo es recto.

En relación con el teorema de Pitágoras, el escritor inglés Aldous L. Huxley (1894-1963), en su novela corta *El joven Arquímedes*, la cual fue publicada en los 1920, incluyó el siguiente relato sobre Guido, el personaje central de la narración, descrito como un niño de aproximadamente siete años. Se cuenta en esta novela cómo otro personaje de ella encontró a Guido de rodillas en el suelo haciendo trazos con la punta de un palo quemado sobre las piedras lisas de la vereda, con los que demostró que el *cuadrado construido sobre la hipotenusa de un triángulo rectángulo es igual a la suma de los cuadrados construidos sobre los dos otros lados*. A continuación, se transcribe la descripción que hizo Huxley de los dibujos de Guido (en la figura 3 se muestra una interpretación de esta descripción).

... Y empezó a demostrar el teorema de Pitágoras, no como Euclides, sino por el método más sencillo y satisfactorio que según todas las probabilidades empleó el mismo Pitágoras. Había dibujado un cuadrado que había seccionado, con un par de perpendiculares cruzadas, en dos cuadrados y dos rectángulos iguales. Dividió los dos rectángulos iguales por sus diagonales en cuatro triángulos rectángulos iguales. Los dos cuadrados resultan estar construidos sobre los lados del ángulo recto de esos triángulos. Eso era el primer dibujo. En el siguiente, tomó los cuatro triángulos
rectángulos en los cuales estaban divididos los rectángulos y los dispuso alrededor del cuadrado primitivo, de manera que sus ángulos rectos llenaran los ángulos de las esquinas del cuadrado, las hipotenusas en el interior y el lado mayor y menor de los triángulos como continuación de los lados del cuadrado (siendo iguales, cada uno, a la suma de esos lados). De este modo, el cuadrado primitivo está seccionado en cuatro triángulos rectos iguales y un cuadrado construido sobre su hipotenusa. Los cuatro triángulos son iguales a los dos rectángulos de la primera división. Resulta que el cuadrado construido sobre la hipotenusa es igual a la suma de dos cuadrados —los cuadrados de los dos catetos— en los cuales, con los rectángulos, fue dividido el primer cuadrado.

![Figura 3. Una reconstrucción de los dibujos de Guido a partir de la descripción dada por Huxley](image)

Una generalización del teorema de Pitágoras

En la figura 4, se muestra un triángulo escaleno ABC en el que el pie D de la altura bajada desde el vértice B está en la prolongación del segmento CA, y en la figura 5 se muestra un triángulo escaleno ABC en el que el pie D de la altura bajada desde el vértice B está en el segmento CA.

![Figura 4. Un triángulo escaleno ABC con el pie D de su altura DB en la prolongación de su base CA](image)
Sean a, b y c las longitudes de los lados BC, CA y AB respectivamente del triángulo dado ABC. En el primer caso, por el teorema de Pitágoras se tiene que

$$c^2 = AD^2 + h^2$$

y

$$a^2 = CD^2 + h^2.$$

Luego,

$$a^2 = CD^2 + (c^2 - AD^2) = (b + AD)^2 + (c^2 - AD^2)$$

$$= b^2 + AD^2 + 2b(AD) + c^2 - AD^2 = b^2 + c^2 + 2b(AD).$$

Esto es,

$$a^2 = b^2 + c^2 + 2b(AD).$$

En el segundo caso, también aplicando el teorema de Pitágoras, se tiene que

$$c^2 = AD^2 + h^2$$

y

$$a^2 = CD^2 + h^2.$$

Figura 5. Un triángulo escaleno ABC con el pie D de su altura DB en su base CA
Luego,

\[a^2 = \overline{CD}^2 + (c^2 - \overline{AD}^2) = (b - \overline{AD})^2 + (c^2 - \overline{AD}^2) \]

\[= b^2 + \overline{AD}^2 - 2b \overline{AD} + c^2 - \overline{AD}^2 = b^2 + c^2 - 2b \overline{AD}. \]

Esto es,

\[a^2 = b^2 + c^2 - 2b \overline{AD}. \]

Con esta deducción de las igualdades

\[a^2 = b^2 + c^2 + 2b \overline{AD} \]

y

\[a^2 = b^2 + c^2 - 2b \overline{AD}, \]

se han demostrado dos antiguos resultados de la geometría también contenidos en los *Elementos* de Euclides: la proposición 12 y la proposición 13 del libro II (este libro II contiene 14 proposiciones). Euclides las enunció así:

Proposición 12
En los triángulos obtusángulos el cuadrado del lado que subtiende al ángulo obtuso es mayor que los cuadrados de los lados que comprenden el ángulo obtuso en dos veces el rectángulo comprendido por un (lado) de los del ángulo obtuso sobre el que cae la perpendicular y la (recta) exterior cortada por la perpendicular, hasta el ángulo obtuso.

Proposición 13
En los triángulos acutángulos, el cuadrado del lado que subtiende al ángulo agudo es menor que los cuadrados de los lados que comprenden el ángulo agudo en dos veces el rectángulo comprendido por uno de los lados del ángulo agudo sobre el
que cae la perpendicular y la (recta) interior cortada por la perpendicular hasta el ángulo agudo.

Así, se ha demostrado que en cualquier triángulo el cuadrado de uno de sus tres lados es igual a la suma de los cuadrados de los otros dos lados más (si el ángulo subtendido por el primer lado es obtuso) o menos (si el ángulo subtendido por el primer lado es agudo) el doble producto de la longitud b de uno de los lados del ángulo subtendido y el segmento rectilíneo comprendido entre el pie de la altura sobre este lado y el vértice de dicho ángulo y que, según hemos visto, se pueden escribir como

\[a^2 = b^2 + c^2 + 2b \overline{AD} \]

y

\[a^2 = b^2 + c^2 - 2b \overline{AD} \]

respectivamente.

Una demostración del converso del teorema de Pitágoras

En la proposición 48 del libro I de los *Elementos* de Euclides vista antes, que es el converso del teorema de Pitágoras, se tiene la hipótesis

p: en un triángulo el cuadrado de uno de los lados es igual a los cuadrados de los dos lados restantes del triángulo,

con base en la cual se debe demostrar la tesis

q: el ángulo comprendido por esos lados restantes del triángulo es recto.

Sea ABC un triángulo en el que se cumple que el cuadrado de uno de sus lados a es igual a los cuadrados de sus otros dos lados b y c, esto es,

\[a^2 = b^2 + c^2. \]
De acuerdo con la hipótesis \(p \), se debe cumplir que

\[2b (\overline{AD}) = 0; \]

luego, \(\overline{AD} \) debe ser igual a cero ya que 2 no es igual a 0 y \(b \), que es la longitud de uno de los lados del triángulo, tampoco (si \(b \) fuese igual a cero, no se tendría triángulo alguno). Pero dado que \(\overline{AD} \) es el segmento rectilíneo comprendido entre el pie \(D \) de la altura sobre el lado de longitud \(b \) (o su prolongación) y el vértice \(A \) del ángulo subtendido por el lado de longitud \(a \), el pie \(D \) de esa altura coincide con dicho vértice \(A \) (\(\overline{AD} = 0 \)); esto es, la longitud de la altura \(h \) —perpendicular al lado \(\overline{AC} \) cuya longitud es \(b \)— es el lado \(\overline{BA} \) cuya longitud es \(c \) (es decir, \(h = c \)). Así, el ángulo interior \(BAC \), que es el comprendido por los lados \(\overline{BA} \) y \(\overline{AC} \), es recto. (Simplemente se puede decir que como en el segundo miembro de la igualdad \(a^2 = b^2 + c^2 \) no se está sumando \(2b (\overline{AD}) \), el ángulo considerado no es obtuso; como tampoco se está restando, el ángulo no es agudo. Así, la única opción restante es que el ángulo sea recto.)

Acerca de áreas de triángulos

Sabemos que el área de un triángulo se calcula multiplicando la longitud de su base por la longitud de su altura y dividiendo este producto entre 2. Esto es, dado el \(\triangle ABC \) del cual se conocen la longitud \(b \) de su base y la longitud \(h \) de su altura, su área se calcula mediante la fórmula
\[\text{área} (\triangle ABC) = \frac{b \times h}{2}. \]

Herón de Alejandría, quien vivió en el siglo I d. n. e., fue un científico griego que abordó el problema de determinar el área de un triángulo escaleno a partir de las medidas de sus tres lados. En el libro I de su obra *Metríca* escribió:

La *Metríca* es un manual de medición de áreas y de volúmenes de diversos tipos de figuras y cuerpos geométricos, el cual fue descubierto en 1896 (relativamente hace poco) en Constantinopla, en un manuscrito que data del siglo XI o del XII. Esta obra de Herón constituye un ejemplo de las matemáticas griegas del siglo I de nuestra era referentes a medición práctica.

Así que el área de un triángulo cualquiera \(\triangle ABC \), dadas las longitudes de sus tres lados, se puede calcular extrayendo la raíz cuadrada del producto de su semiperímetro y las diferencias del semiperímetro con la medida de cada uno de sus lados. Es decir, mediante la fórmula

\[\text{área} (\triangle ABC) = \sqrt{s(s-a)(s-b)(s-c)}, \]

conocida ahora como “fórmula de Herón”, en la que \(a, b \) y \(c \) denotan las medidas de los lados \(BC, CA \) y \(AB \) respectivamente, y

\[s = \frac{a+b+c}{2} \]

es el semiperímetro del triángulo.
De acuerdo con la tradición árabe, Arquímedes (287–212 a. n. e.) conocía este procedimiento para calcular el área de un triángulo y tenía una demostración del mismo. Aunque Herón en su *Metrika* sólo ejemplificó el procedimiento, en otra obra suya, la *Dioptre*, sí presentó una demostración.

Se incluye a continuación una deducción de la denominada “fórmula de Herón” para calcular el área de cualquier triángulo escaleno conocidas las longitudes de sus tres lados (es muy sencillo determinar dicha área si el triángulo dado es isósceles o rectángulo), aplicando los resultados que hasta este punto se han presentado en esta sección.

Supóngase que están dadas las longitudes a, b y c de los lados de un triángulo ABC, como el que se muestra en la figura 4 o el de la figura 5. Se tiene la medida de la base b del ΔABC.

Luego, para poder aplicar la fórmula

$$\text{área} \ (\Delta ABC) = \frac{b \times h}{2}$$

se requiere calcular la longitud h de la altura.

Pero según hemos visto, en el primer caso se tiene que

$$a^2 = b^2 + c^2 + 2b \ (\overline{AD})$$

y en el segundo,

$$a^2 = b^2 + c^2 - 2b \ (\overline{AD}).$$

Esto es,

$$a^2 = b^2 + c^2 \pm 2b \ (\overline{AD}). \quad (1)$$

Así, a partir de la igualdad (1), al despejar \overline{AD} se obtiene
\[\overline{AD} = \frac{b^2 + c^2 - a^2}{\mp 2b}. \] (2)

Con este valor de \(\overline{AD} \) en términos de las longitudes conocidas de los lados del \(\Delta ABC \) se puede determinar la longitud de la altura \(h \) sustituyendo en la igualdad

\[c^2 = h^2 + \overline{AD}^2, \] (3)

la cual se obtiene aplicando el teorema de Pitágoras al triángulo rectángulo \(BDA \) (véanse las figuras 4 y 5).

Elevando al cuadrado ambos miembros de la fórmula

\[\text{área (} \Delta ABC \text{)} = \frac{b \times h}{2}, \]

se tiene que

\[[\text{área (} \Delta ABC \text{)}]^2 = \frac{b^2 \times h^2}{4}. \]

A partir de la igualdad (2), siendo

\[\overline{AD}^2 = \frac{(b^2 + c^2 - a^2)^2}{4b^2}, \]

y de la igualdad (3), se obtiene que

\[h^2 = c^2 - \frac{(b^2 + c^2 - a^2)^2}{4b^2}. \] (4)

Veamos finalmente qué se obtiene al sustituir el valor de \(h^2 \), obtenido en la igualdad (4), en la fórmula

\[[\text{área (} \Delta ABC \text{)}]^2 = \frac{b^2 \times h^2}{4}. \]
\[\text{[area (\Delta ABC)]}^2 = \frac{b^2 \times \left[c^2 - \frac{(b^2 + c^2 - a^2)^2}{4b^2} \right]}{4} = \frac{b^2}{4} \left[c^2 - \frac{(b^2 + c^2 - a^2)^2}{4b^2} \right] \]

\[= \frac{b^2}{4} \frac{c^2}{1} \left[1 - \frac{(b^2 + c^2 - a^2)^2}{4b^2c^2} \right] = \frac{b^2c^2}{4} - \frac{(b^2 + c^2 - a^2)^2}{16} \]

\[= \frac{4b^2c^2 - (b^2 + c^2 - a^2)^2}{16} \]

\[= \left(\frac{2bc + (b^2 + c^2 - a^2)}{4} \right) \left(\frac{2bc - (b^2 + c^2 - a^2)}{4} \right) \]

\[= \left(\frac{(2bc + b^2 + c^2) - a^2}{4} \right) \left(\frac{(2bc - b^2 - c^2) + a^2}{4} \right) \]

\[= \left(\frac{(b+c)^2 - a^2}{4} \right) \left(\frac{-(b-c)^2 + a^2}{4} \right) \]

\[= \left(\frac{(b+c)^2 - a^2}{4} \right) \left(\frac{a^2 - (b-c)^2}{4} \right) \]

\[= \left(\frac{(b+c) - a}{2} \right) \left(\frac{(b+c) + a}{2} \right) \left(\frac{a-(b-c)}{2} \right) \left(\frac{a+(b-c)}{2} \right). \]
Luego,

\[[\text{área (ΔABC)}]^2 = \left(\frac{(b+c)+a}{2} \right) \left(\frac{(b+c)-a}{2} \right) \left(\frac{a-(b-c)}{2} \right) \left(\frac{a+(b-c)}{2} \right). \]

Ahora bien, como

\[\frac{(b+c)+a}{2} = s, \]

se tiene que

\[\frac{(b+c)-a}{2} = s - a, \]

\[\frac{a-(b-c)}{2} = s - b, \]

\[\frac{a+(b-c)}{2} = s - c. \]

Así,

\[[\text{área (ΔABC)}]^2 = s \ (s - a) \ (s - b) \ (s - c) \]

o, lo que es lo mismo,

\[\text{área (ΔABC)} = \sqrt{s \ (s-a) \ (s-b) \ (s-c)}, \]

que es “la fórmula de Herón”.

74
BIBLIOGRAFÍA

Cambray-Núñez, R. Un fulcro aportado por Euclides para mover el mundo de la geometría, XI Encuentro de Maestros de Matemáticas, Memorias de las Conferencias Plenarias, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México, 2003, pp. 59-75.

Huxley, Aldous L. El joven Arquímedes. Buenos Aires, Losada, 1960. [Colección: Biblioteca clásica y contemporánea No. 126; versión en castellano de Leonor de Acevedo; contiene además los relatos: Los Claxton, Cura de reposo, y El monóculo.]

Hoja de trabajo 1

Geoplano 1
Hoja de trabajo 2

Geoplano 2
Hoja de trabajo 4

Auxiliándote de tu geoplano de madera y las ligas de hule, haz lo que se te indica en cada uno de los siguientes pasos.

1. Construye un cuadrado sobre cada uno de los lados del triángulo que aparece en el siguiente geoplano.

![Geoplano 4](image)

2. Determina cuál de los tres es el cuadrado más grande; intenta llenarlo con el área de los dos cuadrados más pequeños.

 a). ¿Cuál es el cuadrado más grande?
 b). Con el área de los dos cuadrados más pequeños, ¿se completa el área del cuadrado más grande? ¿Sobra área de los dos cuadrados más pequeños? ¿Falta?
Segunda sesión

Hoja de trabajo 5
Auxiliándote de tu geoplano de madera y las ligas de hule, haz lo que se te indica en cada uno de los siguientes pasos.

1. Construye un cuadrado sobre cada uno de los lados del triángulo que aparece en el siguiente geoplano.

Geoplano 5
2. Intenta llenar el más grande de los tres cuadrados con el área de los dos cuadrados más pequeños.

 a). ¿Cuál es el cuadrado más grande?
 b). Con el área de los dos cuadrados más pequeños, ¿se completa el área del cuadrado más grande? ¿Sobra área de los dos cuadrados más pequeños? ¿Falta?

Hoja de trabajo 6

¿Hay algún triángulo en el que el área de los cuadrados construidos sobre los dos lados más pequeños quepa exactamente en el cuadrado construido sobre su lado más grande?
Muestra de fotocopias entregadas a los alumnos con una representación gráfica del geoplano de madera de 12×12 clavos como pivotes.
El módulo 10: Áreas y Teorema de Pitágoras
de la serie: Enseñanza de las matemáticas, sección: Geometría
del Programa Interamericano de Capacitación de Maestros
del proyecto: Tecnología y Educación a Distancia
en América Latina y el Caribe,
cuya edición estuvo a cargo de Fomento Editorial
de la Dirección de Difusión y Extensión Universitaria
de la Universidad Pedagógica Nacional,
se terminó de imprimir en marzo de 2006 en los talleres
Compuformas PAF S.A. de C.V. Av. Coyoacán 1031. CP. 03100, Col. del Valle.